Skip to main content
Log in

Dynamics and sedimentation velocity in charge-stabilized colloidal suspensions

  • Published:
Il Nuovo Cimento D

Summary

Charge-stabilized suspensions are characterized by the strong electrostatic interactions between the particles so that rather dilute systems may exhibit strong correlation resulting in a well-developed short-range order. This microstructure, quantitatively described by the pair distribution functiong(r), is rather different from that of (uncharged) hard spheres. It is shown how this difference affects the «hydrodynamic function»H(k), which appears in the expression for the first cumulant Γ(k)=k 2 D eff(k)=k 2 H(k)/S(k) of the dynamic autocorrelation function. Without hydrodynamic interaction,H(k)=D 0, which is the free-diffusion coefficient. Using pairwise additive hydrodynamic interaction and the lowest-order many-body theory of hydrodynamic interaction, it is found thatH(k) can deviate considerably fromD 0 even for systems of volume fractions ϕ as low as 10−3. These effects are more pronounced for collective diffusion than for self-diffusion. SinceH(k=0) is closely related to the sedimentation velocity, we have studied this quantity as a function of volume fraction. It is found that (H(0)/D 0) −1 scales asφ 1/3 at low ϕ in salt-free suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The statistical-mechanical basis is reviewed inJ. M. Deutch, andI. Oppenheim:Faraday Disc. Chem. Soc.,83, 1 (1987). For a phenomenological derivation seeR. Zwanzig:Adv. Chem. Phys.,15, 325 (1969).

    Article  Google Scholar 

  2. For a review of this extension of conventional light scattering methods seeD. A. Weitz andD. J. Pine: inDynamic Light Scattering, edited byW. Brown (Clarendon Press, Oxford, 1993), p. 652.

    Google Scholar 

  3. P. Mazur andD. Bedeaux:Physica A,76, 235 (1974).

    Article  MathSciNet  Google Scholar 

  4. E. J. Hinch:J. Fluid Mech.,72, 499 (1975).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. G. N. Paul andP. N. Pusey:J. Phys. A,14, 3301 (1981);K., Ohbayashi, T. Kohno andH. Utiyama:Phys. Rev. A,27, 2636 (1983).

    Article  ADS  Google Scholar 

  6. B. J. Ackerson:J. Chem. Phys.,64, 242 (1976);69, 684 (1978).

    Article  ADS  Google Scholar 

  7. P. N. Pusey:J. Phys. A,11, 119 (1978);Philos. Trans. R. Soc. London, Ser. A,293, 429 (1979).

    Article  ADS  Google Scholar 

  8. R. Krause, G. Nägele, D. Karrer, J. Schneider, R. Klein andR. Weber:Physica A,153, 400 (1988). For an extension to polydisperse suspensions seeG. Nägele, T. Zwick, R. Krause andR. Klein J. Colloid Interface Sci.,161, 347 (1993).

    Article  ADS  Google Scholar 

  9. B. K. Felderhof andJ. Vogel:Physica A,183, 54 (1992).

    Article  ADS  Google Scholar 

  10. G. Nägele: Habilitationsschrift. Konstanz, 1994.

  11. D. J. Jeffrey andY. Onishi:J. Fluid. Mech.,139, 261 (1984).

    Article  MATH  ADS  Google Scholar 

  12. G. Nägele, O. Kellerbauer, R. Krause andR. Klein:Phys. Rev. E,47, 2562 (1993).

    Article  ADS  Google Scholar 

  13. P. Mazur andW. van Saarloos:Physica A,115, 21 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  14. C. W. J. Beenakker andP. Mazur:Phys. Lett A,98, 22 (1983);Physica A,126, 349 (1984);120, 388 (1983).

    Article  ADS  Google Scholar 

  15. U. Genz andR. Klein:Physica A,171, 26 (1991).

    Article  ADS  Google Scholar 

  16. A. P. Philipse andA. Vrij:J. Chem. Phys.,88, 6459 (1988).

    Article  ADS  Google Scholar 

  17. J. P. Hansen andI. R. McDonald:Theory of Simple Liquids, 2nd edition (Academic Press, London, 1990).

    Google Scholar 

  18. R. Klein: inStructure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution, edited byS.-H. Chen, J. S. Huang andP. Tartaglia (Kluwer, Dordrecht, 1992), p. 39.

    Google Scholar 

  19. B. Cichocki andB. U. Felderhof:J. Chem. Phys.,89, 3705 (1988).

    Article  ADS  Google Scholar 

  20. S. Walrand, L. Belloni andM. Drifford:J. Phys. (Paris),47, 1565 (1986);D. Chatenay, W. Urbach, R. Messager andD. Langevin:J. Chem. Phys.,86, 2343 (1987).

    Google Scholar 

  21. G. K. Batchelor:J. Fluid Mech.,52, 245 (1972).

    Article  MATH  ADS  Google Scholar 

  22. G. Nägele, B. Steininger, U. Genz andR. Klein: to appear onPhys. Scr.

  23. W. B. Russel andA. B. Glendinning:J. Chem. Phys.,74, 948 (1981).

    Article  ADS  Google Scholar 

  24. D. Thies-Weesie andA. P. Philipse: private communication.

  25. B. Cichocki andB. U. Felderhof:J. Chem. Phys.,94, 556 (1991);N. D. Denkov andD. N. Petsev:Physica A,183, 462 (1992).

    Article  ADS  Google Scholar 

  26. T. Biben andJ. P. Hansen:J. Phys.: Condens. Matter,6, A345 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R., Nägele, G. Dynamics and sedimentation velocity in charge-stabilized colloidal suspensions. Il Nuovo Cimento D 16, 963–979 (1994). https://doi.org/10.1007/BF02458782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458782

PACS 82.70.Dd

PACS 61.20.Gy

PACS 61.20.Lc

PACS 01.30.Cc

Navigation