Skip to main content
Log in

The high genetic homology of threeMacaca fascicularis and twoMacaca mulatta subspecies on the basis of their highly repeated DNA restriction patterns

  • Published:
Human Evolution

Abstract

We have studied highly repeated DNA sequences of three subspecies ofM. fascicularis (M.f. philippinensis M.f. mordax, M.f. fusca) and of two subspecies ofM. mulatta (M.m. lasiotus, M.m. mulatta). Restriction patterns were obtained after digestion with 9 restriction endonucleases and evidenced after southern blotting and hybridization with Bam HI satellite DNA fragments fromM. fascicularis subspecies.

M. fascicularis andM. mulatta subspecies studied, present morphological differences but indistinguishable karyotypes: highly repeated DNA analysis, resulting in the same restriction patterns for all the restriction sites studied with highly repeated DNA probes characteristic of the threeM. fascicularis subspecies, gave arguments in favour of the high genetic homology ofM.f. philippinensis, M.f. mordax, M.f. fusca on one side, andM.m. lasiotus andM.m. mulatta on the other, which can be distinguished only on the basis of morphological criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleixandre C., Miller D.A., Mitchell A.R., Warburton D.A., Gersen S.L., Disteche C. and Miller O.J., 1987.p82H identifies sequences at every human centromere. Human Genetics 77: 46–50.

    Article  Google Scholar 

  • Arnason J. and Best P.B., 1991.Phylogenetic relationships within the Mysticeti (whalebone whales) based upon studies of highly repeated DNA in all extant species. Hereditas: 114: 263–269.

    Google Scholar 

  • Baldini A., Miller D.A., Miller O.J., Ryder O.A. and Mitchell A.R., 1991.A chimpanzee derived chromosome-specific alpha satellite DNA sequence conserved between chimpanzee and human. Chromosoma 100: 156–161.

    Article  Google Scholar 

  • Baldini A., Miller, D.A., Shridhar V., Rocchi M., Miller O.J. and War D.C., 1993.Comparative mapping of a gorilladerived alpha satellite DNA clone on great ape and human chromosomes. Chromosoma 101: 109–114.

    Article  Google Scholar 

  • Baldini A., Kied, T., Shridhar V., Ogura K., D’Aiuto L., Rocchi M. and Ward D., 1993.An alphoid DNA sequence conserved in all human and great ape chromosomes evidence for ancient centromeric sequences at human chromosomal regions 2q21 and 9q13. Human Genetics 90: 577–583.

    Article  Google Scholar 

  • Beridize T., 1986.Satellite DNA. Springer-Verlag Berlin.

    Google Scholar 

  • Brown F.L., Musich P.R., and Maio J.J., 1979.The repetitive sequence structure component alpha DNA and its relationship to the nucleosomes of the African green monkey. Journal of Molecular Biology 131: 777–779.

    Article  Google Scholar 

  • Choo K.H., Vissel B., Nagy A. and Kalitsis P., 1991.A survey of the genomic distribution of alpha satellite DNA on all human chromosomes, and derivation of a new consensus sequence. Nucleic Acid Research 19: 1179–1182

    Google Scholar 

  • Crovella S., Ardito C., Montagnon D., Stanyon R. and Wolf C., 1992.Highly repetitive DNA patterns in humans and selected Catarrhine primates (Pan troglodytes, Cercopithecus aethiops, Macaca fascicularis). Folia Primatologica 58: 219–223.

    Article  Google Scholar 

  • Crovella S. and Rumpler Y., 1992.Confirmation of the specific status of Hapalemur aureus (Primates. Strepsirhini) by restriction genomic DNA banding patterns. Human Evolution 7(2): 63–67.

    Article  Google Scholar 

  • Crovella S., Montagnon D. and Rumpler Y., 1993.Highly repeated DNA analysis and systematics of the Lemuridae, a family of Malagasy Prosimians. Primates 34(1): 61–69.

    Article  Google Scholar 

  • Dandieu S., Ruffie J. and Lucotti G., 1985.Cartographie de restriction comparée de l’ADN satellite chez l’homme et le chimpanzee. Biochemical Systematics and Ecology 13: 71–75.

    Article  Google Scholar 

  • Donehower L., Furlong C., Gillespie D. and Kurnit D., 1980.DNA sequence of baboon highly repeated DNA: evidence for evolution by nonrandom unequal crossovers. Proceedings National Academy of USA 77: 129–13.

    Google Scholar 

  • Dutrillaux B., Biemont M.C., Viegas-Pequignot E., and Laurent C., 1979.Comparison of the karyotype from Cercopithecidae: Papio papio; Papio anubis; Macaca mulatta; Macaca fascicularis. Cytogenetic Cell Genetic 23: 77–83.

    Google Scholar 

  • Fanning T.G., Modi W.S., Wayne R.K. and O’Brien S.J., 1988.Evolution of heterochromatin-associated satellite DNA loci in fields and canids (Carnivora). Cytogenetics Cell Genetics 48: 214–219.

    Google Scholar 

  • Fanning T.G., Suanez H.N. and Forman L., 1989.Satellite DNA sequences in the neotropical marmoset Callimico goeldi (Primates Platyrrhini). Chromosoma 98: 396–401.

    Article  Google Scholar 

  • Fooden J., 1982.Ecogeographic segregation of Macaque species. Primates 3 (4): 574–579.

    Article  Google Scholar 

  • Fooden J., 1991.Systematic review of Philippine Macaques (Primates, Cercopithecidae: Macaca fascicularis subspp.). Fieldiana: Zoology, N.S. 64: 1–44.

    Google Scholar 

  • Hill W.C.O., 1953.Primates: Comparative Anatomy and Taxonomy. Vol. VII: Cercopithecidae. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Jones K.W., 1978.Speculations on the functions of satellite DNA in evolution. Zoology Morphology and Anthropology 69: 143–171.

    Google Scholar 

  • Jung K.Y., Crovella S. and Rumpler Y., 1992.Phylogenetic relationships among lemuriform species determined from restriction genomic DNA banding patterns. Folia Primatologica 58: 224–229.

    Article  Google Scholar 

  • Kurnit M., Maio J.J., 1973.Variable satellite DNAs in the African green monkey Cercopithecus aethiops. Chromosoma 45: 387–400.

    Google Scholar 

  • Lima-De-Faria, Arnason U., Widegren B., Isaksson M., Essen-Moller J., and Jaworska H., 1986.DNA cloning and hybridization in deer species supporting the chromosome field theory. Biosystems 19: 185–212.

    Article  Google Scholar 

  • Maio J.J., Brown F.L. and Musich P.R., 1977.Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: Recurrent periodicities and models for the evolutionary origins of repetitive DNA. Journal of Molecular Biology 117: 637–655.

    Article  Google Scholar 

  • Maniatis T., Fritsch E.F. and Sambrook J., 1982.Molecular Cloning. A laboratory manual (2nd edition). C. Nolan ed.) Cold Spring Harbor Laboratory Press. New York.

    Google Scholar 

  • Miklos G.L.G., 1985.Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes, pp. 241–321 in Molecular Evolutionary Genetics MacIntyre S.J. (ed.) Plenum Press, New York.

    Google Scholar 

  • Miller D.A., Sharma D. and Mitchell A.R., 1988.A human derived probe. p82H, hybridizes to the centromeres of gorilla, chimpanzee and orangutan. Chromosoma 96: 270–274.

    Article  Google Scholar 

  • Modi W.S., Fanning T.G., Wayne R.K. and O’Brien S.J. 1988.Chromosomal localization of satellite DNA sequences among twenty two species of felids and canids (Carnivora). Cytogenetics Cell Genetics 48: 208–213.

    Article  Google Scholar 

  • Montagnon D., Crovella S. and Rumpler Y., 1993.Confirmation of the taxonomic position of Callimico goeldi (Primates. Platyrrhini) on the basis of its highly repeated DNA patterns. Compte Rendu de l’Academie des Sciences, Paris 316 (III): 219–223.

    Google Scholar 

  • Musich P.R., Brown F.L. and Maio J.J., 1977.Subunit structure of chkromatin and the organization of eukaryotic highly repetitive DNA. Nucleosomal proteins associated with a highly repetitive mammalian DNA. Proceedings of the National Academy of Sciences of the United States of America 74: 3297–3301.

    Article  Google Scholar 

  • Musich P.R., Brown F.L. and Maio J.J., 1980.Highly repetitive component alpha related alphoid DNAs in man and monkeys. Chromosoma 80: 331–348.

    Article  Google Scholar 

  • Pike L.M., Carlise A., Newell C., Hong S.B. and Musich P.R., 1986.Sequence and evolution of rhesus monkey alphoid DNA. Journal of Molecular Evolution 23: 127–137.

    Article  Google Scholar 

  • Prassolov V.S., Kuchino Y., Nemoto K. and Nishimura S., 1986.Nucleotide sequence of the Bam HI repetitive sequence, including the Hind III fundamental unit, as possible mobile element from the Japanese monkey Macaca fuscata. Journal of Molecular Evolution 23: 200–204.

    Article  Google Scholar 

  • Rosemberg H., Singer M. and Rosemberg M., 1978.Highly reiterated sequences of Simian. Science 200: 394–402.

    Google Scholar 

  • Rubin C.M., Deininger P.L., Houck C.K., and Schmidt C.W., 1980.A dimer satellite sequence in bonnet monkey DNA consists of distinct monomer subunits. Journal of Molecular Biology 136: 151–167.

    Article  Google Scholar 

  • Seuanez H.N., Forman L., Mayatoshi T. and Fanning T.G., 1989.The Callimico goeldi (Primates. Platyrrhini) genome: Karyology and middle repetitive (LINE-1) DNA sequences. Chromosoma 9: 389–395.

    Article  Google Scholar 

  • Stanyon R., Fantini C., Camperio-Ciani A., Chiarelli B. and Ardito G., 1988.Banded karyotypes of 20 Papionini special reveal no necessary correlation with speciation. American Journal of Primatology 16: 3–17.

    Article  Google Scholar 

  • Tautz D. and Renz M., 1983.An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry 13: 14–19.

    Article  Google Scholar 

  • Thayer R.E., Singer M.F. and McCutchan T.F., 1981.Sequence relationships between single repeat units of highly reiterated African green monkey DNA. Nucleid Acid Research 9: 169–181.

    Google Scholar 

  • Waye J.S. and Willard H.F., 1989.Concerted evolution of alpha satellite DNA. Evidence for species specifity and a general lack of sequences conservation among alphoid sequences of higher primates. Chromosoma 98: 273–279.

    Article  Google Scholar 

  • Willard H.F. and Waye J.S., 1987.Hierarchical order in chromosome- specific human satellite DNA. Trends Genetics 3: 192–198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crovella, S., Bigatti, M.P., Ardito, G. et al. The high genetic homology of threeMacaca fascicularis and twoMacaca mulatta subspecies on the basis of their highly repeated DNA restriction patterns. Hum. Evol. 9, 63–71 (1994). https://doi.org/10.1007/BF02438140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02438140

Key words

Navigation