Skip to main content
Log in

Specific insulin binding sites in snail (Helix aspersa) ganglia

  • Short Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Insulin binding sites were characterized and quantified in snail (Helix aspersa) ganglia by incubation of tissue sections with125I-porcine insulin, autoradiography with [3H]Ultrofilm, image analysis coupled to computer-assisted microdensitometry, and comparison with125I-standards. Cellular localization was performed in the same sections by emulsion autoradiography.

  2. 2.

    Specific insulin binding sites were demonstrated in discretely localized groups of neurons of the cerebral, pleural, parietal, visceral, and pedal ganglia and in nerves. Scatchard analysis performed with consecutive sections from single animals revealed a single class of high-affinity insulin binding sites (K d, 0.13 ± 0.01 nM;B max, 157 ± 10 fmol/mg protein).

  3. 3.

    Our results suggest that insulin may play a role as a neurotransmitter or neuromodulator in snail ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barbaccia, M. L., Chuang, D. M., and Costa, E. (1982). Is insulin a neuromodulator?Adv. Biochem. Psychopharmacol. 33511–518.

    Google Scholar 

  • Berggren, U., Engel, J., and Liljequist, S. (1983). Differential effects of insulin on brain monoamine metabolism in rats.Acta Pharmacol. Toxicol. 5339–43.

    Google Scholar 

  • Boyd, F. T., Jr., Clarke, D. W., Muther, T. F., and Raizada, M. K. (1985). Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain.J. Biol. Chem. 26015880–15884.

    Google Scholar 

  • Collip, J. B. (1923). The demonstration of an insulin-like substance in the tissues of the clam (Mya arenaria).J. Biol. Chem. 5539.

    Google Scholar 

  • Cruz, J., Posmer, B. I., and Bergeron, J. J. M. (1984). Receptor-mediated endocytosis of [125I]insulin into pancreatic acinar cells in vitro.Endocrinology 1151996–2008.

    Google Scholar 

  • DeMontis, M. G., Olianas, M. C., Haber, B., and Tagliamonte, A. (1978). Increase in large neutral amino acid transport into brain by insulin.J. Neurochem. 30121–124.

    Google Scholar 

  • Goochee, C., Rasband, W., and Sokoloff, L. (1980). Computerized densitometry and color coding of [14C]deoxyglucose autoradiograms.Ann. Neurol. 7359–370.

    Google Scholar 

  • Havrankova, J., and Roth, J. (1978). Insulin receptors are widely distributed in the central nervous system of the rat.Nature 272827–829.

    Google Scholar 

  • Havrankova, J., Schmechel, D., Roth, J., and Brownstein, M. (1978). Identification of insulin in rat brain.Proc. Natl. Acad. Sci. USA 755737–5741.

    Google Scholar 

  • Hendricks, S. A., Agardh, C. D., Taylor, S. I., and Roth, J. (1984). Unique features of the insulin receptor in rat brain.J. Neurochem. 431302–1309.

    Google Scholar 

  • Israel, A., Correa, F. M. A., Niwa, M., and Saavedra, J. M. (1984). Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography.Brain Res. 322341–345.

    Google Scholar 

  • Jacobs, S., and Cuatrecasas, P. (1981). Insulin receptor: Structure and function.Endocr. Rev. 21251–263.

    Google Scholar 

  • Kappy, M. S., and Raizada, M. K. (1982). Adult-level insulin binding is present in term fetal rat CNS membranes.Brain Res. 249390–392.

    Google Scholar 

  • Kappy, M., Sellinger, S., and Raizada, M. (1984). Insulin binding in four regions of the developing rat brain.J. Neurochem. 42198–203.

    Google Scholar 

  • Kerkut, G. A., Lambert, J. D. C., Gayton, R. J., Loker, J. E., and Walker, R. J. (1975). Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa.Comp. Biochem. Physiol. 50A1–25.

    Google Scholar 

  • Mackenzie, R. G., and Trulson, M. E. (1978). Effects of insulin and streptozotocin-induced diabetes on brain tryptophan and serotonin metabolism in rats.J. Neurochem. 30205–211.

    Google Scholar 

  • Marques, M., and Falkmer, S. (1976). Effects of mammalian insulin on blood glucose level, glucose tolerance and glycogen content of musculature and hepatopancreas in a gastropod mollusk,Strophocheilus oblongus.Gen. Comp. Endocrinol. 29527–530.

    Google Scholar 

  • Martinez, N. R. de, Garcia, M. C., Sales, M., and Candela, J. L. R. (1973). Proteins with insulin-like activity isolated from osyter (Ostrea edulis) hepatopancreas.Gen. Comp. Endocrinol. 20305–311.

    Google Scholar 

  • McCaleb, M. L., Myers, R. D., Singer, G., and Willis, G. (1979). Hypothalamic norepinephrine in the rat during feeding and push-pull perfusion with glucose, 2-DG or insulin.Am. J. Physiol. 236R312-R321.

    Google Scholar 

  • Oomura, Y., and Hikita, H. (1981). Insulin acting as a modulator of feeding through the hypothalamus.Diabetologia 20290–298.

    Google Scholar 

  • Piezzi, R. S., Pohorecky, L. A. Cavicchia, J. C., and Galleano, J. P. (1975). Comparative effect of insulin on explanted adrenal medullary tissue and rat adrenal medulla in situ.J. Endocrinol. 64323–328.

    Google Scholar 

  • Rowe, J. W., Young, J. B., and Minaker, K. L. (1981). Effect of insulin and glucose infusions on sympathetic nervous syetem activity in normal man.Diabetes 30219–225.

    Google Scholar 

  • Sauter, A., Goldstein, M., Engel, J., and Ueta, K. (1981). Effect of insulin on central catecholamines.Brain Res. 260219–225.

    Google Scholar 

  • Sedden, C. B., Walker, R. J., and Kerkut, G. A. (1968). The localization of dopamine and 5-hydroxytryptamine in neurons of Helix aspersa.Symp. Zool. Soc. Lond. 2219–32.

    Google Scholar 

  • Ulus, I. H., and Wurtman, R. J. (1979). Selective response of rat peripheral sympathetic nervous system to various stimuli.J. Physiol. 293513–523.

    Google Scholar 

  • van Houten, M., and Posmer, B. I. (1979). Insulin binds to brain blood vessels in vitro.Nature 282623–625.

    Google Scholar 

  • Weyhenmeyer, J. A., Relmer, A. M., Reynold, I., and Killian, A. (1985). Light and electron microscopic analysis of insulin binding sites on neurons in dissociated brain cell cultures.Brain Res. Bull. 14415–421.

    Google Scholar 

  • Yamashita, K., Mieno, M., and Shimizu, T. (1976). Response of adrenal medulla to exogenous insulin in head of X-irradiated dogs.J. Endocrinol. 71447–448.

    Google Scholar 

  • Young, W. S., III, and Kuhar, M. J. (1979). A new method of [3H]receptor autoradiography: [3H]opioid receptors in rat brain.Brain Res. 179255–270.

    Google Scholar 

  • Young, W. S., III, Kuhar, M. J., Roth, J., and Brownstein, M. J. (1980). Radiohistochemical localization of insulin receptors in the adult and developing rat brain.Neuropeptides 115–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saavedra, J.M., Juorio, A.V., Shigematsu, K. et al. Specific insulin binding sites in snail (Helix aspersa) ganglia. Cell Mol Neurobiol 9, 273–279 (1989). https://doi.org/10.1007/BF00713034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713034

Key words

Navigation