Skip to main content
Log in

The ADM Hamiltonian at the postlinear approximation

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The ADM Hamiltonian for a many-particle system is calculated up to the postlinear approximation, i.e., to the approximation that both the equations of motion for the particles and the equations of motion for the gravitational field in case of no-incoming radiation correctly result up to the postlinear approximation. The relation of this Hamiltonian to the ADM Hamiltonian obtained by a post-Newtonian approximation scheme which was applied up to the first radiation-reaction and radiation levels is discussed. From here the standard formulas for the mechanical angular momentum and energy losses as well as the radiated energy and angular momentum are deduced. Background logarithmic and logarithmic radiative terms are shown to be not present at our approximation if the condition of no-incoming radiation is fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westpfahl, K., and Goller, M. (1979).Lett. Nuovo Cimento,26, 573; Westpfahl, K., and Hoyler, H. (1980).Lett. Nuovo Cimento,27, 581.

    Google Scholar 

  2. Bel, L., Damour, T., Deruelle, N., Ibañez, J., and Martin, J. (1981).Gen. Rel. Grav.,13, 963.

    Google Scholar 

  3. Damour, T., and Deruelle, N. (1981).Phys. Lett.,87A, 81.

    Google Scholar 

  4. Deruelle, N. (1983). InProceedings of the Third Marcel Grossmann Meeting on General Relativity, N. Hu, ed. (North-Holland, Amsterdam), p. 955.

    Google Scholar 

  5. Damour, T. (1982).C. R. Acad. Sci. Paris,294, Série II, 1355.

    Google Scholar 

  6. Damour, T. (1983). InProceedings of the Third Marcel Grossmann Meeting on General Relativity, N. Hu, ed. (North-Holland, Amsterdam), p. 583.

    Google Scholar 

  7. Damour, T. (1983). InGravitational Radiation, N. Deruelle and T. Piran, eds. (North-Holland, Amsterdam).

    Google Scholar 

  8. Arnowitt, R., Deser, S., and Misner, C. W. (1962). InGramtation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York).

    Google Scholar 

  9. Ohta, T., Okamura, H., Kimura, T., and Hiida, K. (1974).Prog. Theor. Phys.,51, 1598.

    Google Scholar 

  10. Schäfer, G. (1985).Ann. Phys. (N.Y.),161, 81.

    Google Scholar 

  11. Damour, T., and Schäfer, G. (1985).Gen. Rel. Grav.,17, 879.

    Google Scholar 

  12. DeWitt, B. S. (1967).Phys. Rev.,160, 1113.

    Google Scholar 

  13. Regge, T., and Teitelboim, C. (1974).Ann. Phys. (N.Y.),88, 286.

    Google Scholar 

  14. Rosenblum, A. (1978).Phys. Rev. Lett.,41, 1003; (1981).Phys. Lett.,81A, 1.

    Google Scholar 

  15. Fock, V. (1960).Theorie von Raum, Zeit und Gravitation (Akademie-Verlag, Berlin), Section 87.

    Google Scholar 

  16. Isaacson, R. A., and Winicour, J. (1968).Phys. Rev.,168, 1451.

    Google Scholar 

  17. Madore, J. (1970).Ann. Inst. Henri Poincaré,12, 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, G. The ADM Hamiltonian at the postlinear approximation. Gen Relat Gravit 18, 255–270 (1986). https://doi.org/10.1007/BF00765886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00765886

Keywords

Navigation