Skip to main content
Log in

Nonlinear Effects in the Cosmic Microwave Background

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Major advances in the observation and theory of cosmic microwave background anisotropies have opened up a new era in cosmology. This has encouraged the hope that the fundamental parameters of cosmology will be determined to high accuracy in the near future. However, this optimism should not obscure the ongoing need for theoretical developments that go beyond the highly successful but simplified standard model. Such developments include improvements in observational modelling (e.g. foregrounds, non-Gaussian features), extensions and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic effects, defects), and investigation of nonlinear effects. In addition to well known nonlinear effects such as the Rees–Sciama and Ostriker–Vishniac effects, further nonlinear effects have recently been identified. These include a Rees–Sciama-type tensor effect, time-delay effects of scalar and tensor lensing, nonlinear Thomson scattering effects and a nonlinear shear effect. Some of the nonlinear effects and their potential implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bahcall, N., Ostriker, J. P., Perlmutter, S., and Steinhardt, P. J. (1999). Science 284, 1481.

    Google Scholar 

  2. Scott, D. (1998). Preprint astro-ph/9810330.

  3. Hu, W., and Sugiyama, N. (1995). Astrophys. J. 444, 489; ibid. (1995). Phys. Rev. D 51, 2599.

    Google Scholar 

  4. Ma, C. P., and Bertschinger, E. (1995). Astrophys. J. 455, 7.

    Google Scholar 

  5. Zaldarriaga, M., Seljak, U., and Bertschinger, E. (1998). Astrophys. J. 494, 491.

    Google Scholar 

  6. Hu, W., Seljak, U., White, M., and Zaldarriaga, M. (1998). Phys. Rev. D 57, 3290.

    Google Scholar 

  7. Durrer, R. and Kahniashvili, T. (1998). Helv. Phys. Acta 71, 445.

    Google Scholar 

  8. Tenorio, L., Jaffe, A. H., Hanany, S., and Lineweaver, C. H. (1999). Preprint astroph/9903206

  9. Verde, L., Wang, L., Heavens, A. F., and Kamionkowski, M. (1999). Preprint astroph/9906301.

  10. Melchiorri, A., Vernizzi, F., Durrer, R., and Veneziano, G. (1999). Phys. Rev. Lett. 83, 4464.

    Google Scholar 

  11. Uzan, J.-P., Deruelle, N., and Riazuelo, A. (1998). Preprint astro-ph/9810313.

  12. Contaldi, C., Hindmarsh, M., and Magueijo, J. (1999). Phys. Rev. Lett. 82, 2034.

    Google Scholar 

  13. Bassett, B. A., Kaiser, D. I., and Maartens, R. (1999). Phys. Lett. B 455, 84; Bassett, B. A., Tamburini, F., Kaiser, D. I., and Maartens, R. (1999). Nucl. Phys. B 561, 188.

    Google Scholar 

  14. Ostriker, J. P., and Vishniac, E. T. (1986). Astrophys. J. 306, L51.

    Google Scholar 

  15. Sunyaev, R. A., and Zeldovich, Ya. B. (1970). Astrophys. Space Sci. 7, 3.

    Google Scholar 

  16. Haiman, Z., and Knox, L. (1999). Preprint astro-ph/9902311.

  17. Rees, M., and Sciama, D. W. (1968). Nature 519, 611.

    Google Scholar 

  18. Seljak, U. (1996). Astrophys. J. 463, 1.

    Google Scholar 

  19. Refrieger, A., Spergel, D. N., and Herbig, T. (1998). Preprint astro-ph/9806349.

  20. Mollerach, S., and Matarrese, S. (1997). Phys. Rev. D 56, 4494.

    Google Scholar 

  21. Pyne, T., and Carroll, S. M. (1996). Phys. Rev. D 53, 2920.

    Google Scholar 

  22. Bruni, M., Matarrese, S., Mollerach, S., and Sonego, S. (1997). Class. Quantum Grav. 14, 2585.

    Google Scholar 

  23. Maartens, R., Gebbie, T., and Ellis, G. F. R. (1999). Phys. Rev. D 59, 083506.

    Google Scholar 

  24. Hu, W., Scott, D., and Silk, J. (1994). Phys. Rev. D 49, 648.

    Google Scholar 

  25. Challinor, A. D. (2000). Gen. Rel. Grav. 32, XX.

    Google Scholar 

  26. Ehlers, J. (1961). Akad. Wiss. Lit. Mainz. Math.-Nat. Kl. 11, 1. Translated into English by G. F. R. Ellis (1993). Gen. Rel. Grav. 25, 1225.

    Google Scholar 

  27. Ellis, G. F. R. (1971). In General Relativity and Cosmology, R. K. Sachs, ed. (Academic, New York).

    Google Scholar 

  28. Hawking, S. W. (1966). Astrophys. J. 145, 544.

    Google Scholar 

  29. Ellis, G. F. R., and Bruni, M. (1989). Phys. Rev. D 40, 1804.

    Google Scholar 

  30. Ellis, G. F. R., Matravers, D. R., and Treciokas, R. (1983). Ann. Phys. 150, 455; Ellis, G. F. R., Treciokas, R., and Matravers, D.R. (1983). Ann. Phys. 150, 487.

    Google Scholar 

  31. Maartens, R., Ellis, G. F. R., and Stoeger, W. R. (1995). Phys. Rev. D 51, 1525.

    Google Scholar 

  32. Challinor, A. D., and Lasenby, A. N. (1998). Phys. Rev. D 58, 023001; ibid. (1999). Astrophys. J. 513, 1.

    Google Scholar 

  33. Gebbie, T., and Ellis, G. F. R. (1998). Preprint astro-ph/9804316, to appear in Ann. Phys. (NY); Gebbie, T., Dunsby, P. K. S., and Ellis, G. F. R. (1999). Preprint astro-ph/9904408, to appear in Ann. Phys. (NY).

  34. Maartens, R. (1997). Phys. Rev. D 55, 463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maartens, R. Nonlinear Effects in the Cosmic Microwave Background. General Relativity and Gravitation 32, 1075–1090 (2000). https://doi.org/10.1023/A:1001973727910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001973727910

Navigation