Skip to main content
Log in

Changes of immunoreactivity in α1-antitrypsin in patients with autoimmune diseases

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Recent studies from this laboratory have shown that a monoclonal antibody prepared against a specific epitope on α1-antitrypsin is a valuable diagnostic marker for autoimmune conditions. In the present study we have further characterized this monoclonal antibody and reassessed its diagnostic value in screening samples from patients with various autoimmune conditions. α1-Antitrypsin was micropurified from patients with selected autoimmune conditions and from normal donors. The purified α1-antitrypsin isolated. from patients with autoimmune conditions and normal donors was deglycosylated losing both a mixture of exoglycosidases and endoglycosidase F. The immunoreactivity of the native and deglycosylated α1-antitrypsin was examined using both a monoclonal antibody and a polyclonal antibody in enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA), respectively. It was noted that α1-antitrypsin isolated from patients with autoimmune diseases generated a displacement curve dissimilar to α1-antitrypsin purified from normal donors or α1 antitrypsin from patients with autoimmune diseases subjected to deglycosylation when these samples were examined by ELISA using the monoclonal antibody. However, when the polyclonal antibody was used for these studies, no difference was found between the native and deglycosylated ga1,-antitrypsin suggesting that the monoclonal antibody recognized an epitope not detectable by the polyclonal antibody. We have also assessed the diagnostic usefulness of this monoclonal antibody using a battery of 530 serum samples obtained from patients with different autoimmune diseases and compared to normal human serum (NHS,N−66); these include: systemic lupus erythematosus (SLE,N=149), rheumatoid arthritis (RA,N=64), renal diseases (NP,N=33), liver diseases (HP,N=33), mixed connective tissue disease (MCTD,N = 12), diabetes (DB,N=40), SjÖgren's syndrome (SS,N = 41), polymyositis (PM,N=20), scleroderma (SCL,N=20), Alzheimer's disease (AZ,N=11), and patients with elevated levels of carcinoembryonic antigen (CEA,N=41). The results of this study demonstrated that this monoclonal antibody is positively correlated with SLE and SS. The significance of the monoclonal antibody in connection with the pathogenesis of autoimmune diseases was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose, N. R. 1989. Pathogenic mechanisms in autoimmune diseases.Clin. Immunol. Immunopathol. 53:S7-S16.

    Google Scholar 

  2. Ishizaka, T., T. H. Campbell, andK. Ishizaka. 1960. Internal antigenic determinants in protein molecules.Proc. Soc. Exp. Biol. Med. 103:5–9.

    Google Scholar 

  3. Lapresle, C., M. Kaninsky, andC. Tanner. 1959. Immunochemical study of the enzymatic degradation of human serum albumin: An analysis of the antigenic structure of a protein molecule.J. Immunol. 82:94.

    Google Scholar 

  4. Silvestrini, B., P. G. Natali, B. Catanese, G. Barillari, andP. Cordiali-Fei. 1980. Occurrence of globulin-like migrating blood albumins, or GLIMBAL, in pathological rat and human sera.Can. J. Biochem. 58:89–92.

    Google Scholar 

  5. Schachter, H. 1984. Glycoproteins: Their structure, biosynthesis and possible clinical implications.Clin. Biochem. 17:3–14.

    Google Scholar 

  6. Srivastava, R. A. 1991. Effect of glycosylation of bacterial amylase on stability and active site conformation.Indian J. Biochem. Biophys. 28:109–113.

    Google Scholar 

  7. Gu, J. X., T. Matsuda, R. Nakamura, H. Ishiguro, I. Onkubo, M. Sasaki, andN. Takahashi. 1989. Chemical deglycosylation of hen ovomucoid: Protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation.J. Biochem. 106:66–70.

    Google Scholar 

  8. Oh, E. M., M. Hasegawa, K. Hattori, H. Kuboniwa, T. Kojima, T. Orita, K. Tomonou, T. Yamazaki, andN. Ochi. 1990.O-linked sugar chain of human granulocytes colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity.J. Biol. Chem. 265:11432–11435.

    Google Scholar 

  9. Stepuro, I. N., N. A. Yaroshevich, andA. S. Yanchurevich. 1988. Role of ε-amino groups of lysine residues of human serum albumin in processes of thermal denaturation of protein. Increase in stability of glycosylated and alkylated albumin toward aggregation during heating.Mol. Biol. J. 22:343–352.

    Google Scholar 

  10. Mallet, B., J. L. Franc, M. Miquel, andC. Arnaud. 1987. Effects of severe burns on glycan microheterogeneity of four acute-phase proteins.Clin. Chim. Acta 167:247–257.

    Google Scholar 

  11. Pos, O., M. E. van der Stelt, G. J. Wolbink, M. W. N. Nijsten, W. van der Temple, andW. van Dijk. 1990. Changes in the serum concentration and the glycosylation of human α,-acid glycoprotein and α1-protease inhibitor in severely burned persons: Relation to interleukin-6 levels.Clin. Exp. Immunol. 82:579–582.

    Google Scholar 

  12. Silvestrini, B., A. Guglielmotti, L. Saso, andC. Y. Cheng. 1989. Changes in concanavalin A-reactive proteins in inflammatory disorders.Clin. Chem. 35:2207–2211.

    Google Scholar 

  13. Mackiewicz, A., T. Pawlowski, A. Mackiewicz-Pawlowska, K. Wiktorowicz, andS. Mackiewicz. 1987. Microheterogeneity forms of α1-acid glycoprotein as indicators of rheumatoid arthritis activity.Clin. Chim. Acta 163:185–190.

    Google Scholar 

  14. Mackiewicz, A., R. Marcinkowska-Pieta, S. Ballou, S. Mackiewicz, andI. Kushner. 1987. Microheterogeneity of α1-acid glycoprotein in the detection of intercurrent infection in systemic lupus erythematosus.Arthritis Rheum. 30:513–518.

    Google Scholar 

  15. Hansen, J. E. S., V. A. Larsen, andT. C. Bog-Hansen. 1984. The microheterogeneity of α1-acid glycoprotein in inflammatory lung disease, cancer of the lung and normal health.Clin. Chim. Acta 138:41–47.

    Google Scholar 

  16. Pawlowski, T., A. Aeschlimann, M. F. Kahn, P. Vaith, S. H. Mackiewicz, andW. Mueller. 1990. Microheterogeneity of acute phase proteins in the differentiation of polymyalgia rheumatica from polymyositis.J. Rheumatol. 17:1187–1192.

    Google Scholar 

  17. Koj, A. 1974. Acute phase proteins.In Structure and Function of Plasma Proteins. A. C. Allison, editors. Plenum Press, New York. 73–125.

    Google Scholar 

  18. Schreiber, G. 1987. Synthesis, processing, and secretion of plasma proteins by the liver and other organs and their regulation.In The Plasma Proteins. F. W. Putnam, editors. Academic Press, New York. 293–363.

    Google Scholar 

  19. Silvestrini, B., A. Guglielmotti, L. Saso, C. Milanese, E. Melanitou, J. Grima, andC. Y. Cheng. 1990. Development of an enzyme-linked immunosorbent assay with a monoclonal antibody prepared against α1-antitrypsin for diagnostic screening of the inflammatory disorders.Clin. Chem. 36:277–282.

    Google Scholar 

  20. Cheng, C. Y., J. Grima, M. S. Stahler, A. Guglielmotti, B. Silvestrini, andC. W. Bardin. 1990. Sertoli cell synthesizes and secretes a protease inhibitor, α2-macroglobulin.Biochemistry 29:1063–1068.

    Google Scholar 

  21. Vaitukaitis, J., J. B. Robbins, E. Nieschlag, andG. T. Ross. 1971. A method for producing specific antisera with small doses of immunogen.J. Clin. Endocrinol. Metab. 33:988–996.

    Google Scholar 

  22. Cheng, C. Y., P. P. Mathur, andJ. Grima. 1988. Structural analysis of clusterin and its subunits in ram rete testis fluid.Biochemistry 27:4079–4088.

    Google Scholar 

  23. Bolton, A. E., andW. M. Hunter. 1973. The labelling of proteins to high specific radioactivities by conjugation to a [125I]-containing acylating agent.Biochem. J. 133:529–539.

    Google Scholar 

  24. Cheng, C. Y., J. Grima, M. S. Stahler, R. A. Lockshin, andC. W. Bardin. 1989. Testins are structurally related Sertoli cell proteins whose secretion is tightly coupled to the presence of germ cells.J. Biol. Chem. 264:21386–21393.

    Google Scholar 

  25. Ropes, M. W., G. A. Bennett, S. Gobb, R. Jacox, andR. A. Jessar. 1958. Revision for diagnostic criteria for rheumatoid arthritis.Bull. Rheum. Dis. 9:175–176.

    Google Scholar 

  26. Sharp, G. C., W. S. Irvi, E. M. Tan, R. G. Gould, andH. R. Holman. 1972. Mixed connective tissue disease-an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA).Am. J. Med. 52:148–159.

    Google Scholar 

  27. Vitali, C., P. Monti, C. Giuggiolli, A. Tavoni, R. Neri, F. Genovesiebert, G. Marchetti, M. Gabriele, andS. Bombardieri. 1989. Parotid sialography and lip biopsy in the evaluation of oral component in Sjogren's syndrome.Clin. Exp. Rheumatol. 7:131–135.

    Google Scholar 

  28. Cheng, C. Y., N. A. Musto, G. L. Gunsalus, J. Frick, andC. W. Bardin. 1985. There are two forms of androgen binding protein in human testes. Comparison of their protomeric variants with testosterone-sstradiol binding globulin.J. Biol. Chem. 260:5631–5640.

    Google Scholar 

  29. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254.

    Google Scholar 

  30. Macart, M., andL. Gerbaut. 1982. An improvement of the Coomassie blue dye binding method allowing an equal sensitivity to various proteins: Application to the cerebrospinal fluid.Clin. Chim. Acta 122:93–101.

    Google Scholar 

  31. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.

    Google Scholar 

  32. Cheng, C. Y., N. A. Mlsto, G. L. Gunsalus, andC. W. Bardin. 1983. Demonstration of heavy and light protomers of human testosterone-estradiol binding globulin.J. Steroid Biochem. 19:1379–1389.

    Google Scholar 

  33. Hodges, L. C., R. Laine, andS. K. Chan. 1979. Structure of the oligosaccharide chains in human approtease inhibitor.J. Biol. Chem. 254:8208–8212.

    Google Scholar 

  34. DeLean, A., P. G. Munson, andD. Rodbard. 1977. Simultaneous analysis of families of sigmoidal curves. Application to bioassay, radioligand assay, and physiological dose response curves.Am. J. Physiol. 235:E97-E102.

    Google Scholar 

  35. Cheng, C. Y., J. Frick, G. L. Gunsalus, N. A. Musto, andC. W. Bardin. 1984. Human testicular androgen-binding protein shares immunodeterminants with serum testosterone-estradiol-binding globulin.Endocrinology 114:1395–1401.

    Google Scholar 

  36. Carrell, R. W., J. O. Jeppsson, C. B. Laurell, S. O. Brennan, M. C. Owen, L. Vaughan, andD. R. Boswell. 1982. Structure and variation of human α1-antitrypsin.Nature 298:329–333.

    Google Scholar 

  37. Crystal, R. G. 1990. α1-Antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy.J. Clin. Invest 85:1343–1352.

    Google Scholar 

  38. Perlmutter, D. H., F. S. Cole, P. Kilbridge, T. H. Rossing, andH. R. Colten. 1985. Expression of the α1-proteinase inhibitor gene in human monocytes and macrophages,Proc. Natl. Acad. Sci. U.S.A. 82:795–799.

    Google Scholar 

  39. Mornex, J. F., A. Chytil-Weir, Y. Martinet, M. Courtney, J. P. LeCocq, andR. G. Crystal. 1986. Expression of the α1-antitrypsin gene in mononuclear phagocytes of normal and α1-antitrypsin-deficient individuals.J. Clin. Invest. 77:1952–1961.

    Google Scholar 

  40. Gautier, M., J. P.Martin, and G.Polini. In vitro synthesis of α1-antitrypsin in long term monolayer human liver cell cultures.Biomedicine 27:116–119.

  41. Geiger, T., W. Northemann, E. Schmelzer, V. Gross, F. Gauthier, andP. C. Heinrich. 1982. Synthesis of α1-antitrypsin in rat-liver hepatocytes and in a cell-free system.Eur. J. Biochem. 126:189–195.

    Google Scholar 

  42. Latimer, J. J., F. G. Berger, andH. Baumann. 1987. Developmental expression, cellular localization, and testosterone regulation of α1-antitrypsin inMus caroli kidney.J. Biol. Chem. 262:12641–12646.

    Google Scholar 

  43. Carlson, J., S. Eriksson, R. Alm, andT. Kjellstrom. 1984. Biosynthesis of abnormally glycosylated α1-antitrypsin by a human hepatoma cell line.Hepatology 4:235–241.

    Google Scholar 

  44. Eriksson, S. 1964. Pulmonary emphysema and α1-antitrypsin deficiency.Acta Med. Scand. 175:197–205.

    Google Scholar 

  45. Sharp, H. L. 1971. α1-Antitrypsin deficiency.Hosp. Practice 5:83–96.

    Google Scholar 

  46. Long, G. L., T. Chandra, S. L. C. Woo, E. W. Davier, andK. Kurachi. 1984. Complete sequence of the cDNA for human α1-antitrypsin and the gene for the S variant.Biochemistry 23:4828–4837.

    Google Scholar 

  47. Spik, G., B. Bayard, B. Fournet, G. Strecker, S. Bouquelet, andJ. Montreuil. 1975. Studies on glycoconjugates. LXIV. Complete structure of two carbohydrate units of human serotransferrin.FEBS Lett. 50:296–299.

    Google Scholar 

  48. Saso, L., B. Silvestrini, I. Zwain, A. Guglielmotti, M. R. Luparini, V. Cioli, andC. Y. Cheng. 1992. Abnormal glycosylation of hemopexin in arthritic rats can be blocked by bindarit.J. Rheumatol. 19:1859–1867.

    Google Scholar 

  49. Cheng, C. Y., andC. W. Bardin. 1987. Identification of two testosterone-responsive testicular proteins in Sertoli cell-enriched culture medium whose secretion is suppressed by cells of the intact seminiferous tubule.J. Biol. Chem. 262:12768–12779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saso, L., Silvestrini, B., Lahita, R. et al. Changes of immunoreactivity in α1-antitrypsin in patients with autoimmune diseases. Inflammation 17, 383–400 (1993). https://doi.org/10.1007/BF00918999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00918999

Keywords

Navigation