Skip to main content
Log in

A refined evaluation of the gas-phase water-dimerization equilibrium constant within non-rigid BJH- and MCY-type potentials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The flexible BJH- and flexible or semiflexible MCY-type water-water potentials (4 potential modifications in each nonrigid family, i.e., altogether 12 potentials) are used for evaluation of the gas-phase water-dimerization equilibrium constants. The potential-energy term is adjusted for best reproduction of the available experimental equilibrium constants. An independent test using the experimental steam second-virial coefficient isotopic difference shows that the adjustment also improves the computational evaluation of the difference. A set of dimerization equilibrium constants is suggested over a wide temperature interval (based on the BJH/G, MCY-B, or MCYB potential modifications). The best reproduction of the experimental equilibrium constants (in conjunction with good performance for the second-virial isotopic difference) is produced by the BJH/G potential. The results are applicable to various problems such as the formation of water clusters in large-scale natural and artificial water jets (e.g., hydrogen-oxygen rocket motors, orbital capsule water dumps, water ejection from a comet nucleus) or in atmospheric chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Dyke, K. M. Mack, and J. S. Muenter, J. Chem. Phys. 66:498 (1977).

    Google Scholar 

  2. J. A. Odutola and T. R. Dyke, J. Chem. Phys. 72:5062 (1980).

    Google Scholar 

  3. T. R. Dyke, K. M. Mack, and J. S. Muenter, J. Chem. Phys. 66:498 (1977).

    Google Scholar 

  4. L. Fredin, B. Nelander, and G. Ribbegård, J. Chem. Phys. 66:4073 (1977).

    Google Scholar 

  5. R. M. Bentwood, A. J. Barnes, and W. J. Orville-Thomas, J. Mol. Spectrosc. 84:391 (1980).

    Google Scholar 

  6. L. H. Coudert and J. T. Hougen, J. Mol. Spectrosc. 139:259 (1990).

    Google Scholar 

  7. B. J. Yoon, K. Morokuma, and E. R. Davidson, J. Chem. Phys. 83:1223 (1985).

    Google Scholar 

  8. D. F. Coker and R. O. Watts, J. Phys. Chem. 91:2513 (1987).

    Google Scholar 

  9. E. Honegger and S. Leutwyler, J. Chem. Phys. 88:2582 (1988).

    Google Scholar 

  10. C. E. Dykstra, J. Chem. Phys. 91:6472 (1989).

    Google Scholar 

  11. B. J. Smith, D. J. Swanton, J. A. Pople, H. F. Schaefer III, and L. Radom, J. Chem. Phys. 92:1240 (1990).

    Google Scholar 

  12. S. H. Suck, J. L. Kassner, Jr., and Y. Yamaguchi, Appl. Opt. 18:2609 (1979).

    Google Scholar 

  13. C. J. Wormald, C. N. Colling, and G. Smith, Fluid Phase Equil. 10:223 (1983).

    Google Scholar 

  14. H. Kleeberg and W. A. P. Luck, Z. Phys. Chem. (Leipzig) 270:613 (1989).

    Google Scholar 

  15. D. E. Hastings and N. A. Gatsonis, J. Geophys. Res. A 94:3729 (1989).

    Google Scholar 

  16. J. F. Crifo, Astron. Astrophys. 187:438 (1987).

    Google Scholar 

  17. E. Murad and P. Bochsler, Nature 326:366 (1987).

    Google Scholar 

  18. M. Combes, V. I. Moroz, J. Crovisier, T. Encrenaz, J.-P. Bibring, A. V. Grigoriev, N. F. Sanko, N. Coron, J. F. Crifo, R. Gispert, D. Bockelée-Morvan, Yu. V. Nikolsky, V. A. Krasnopolsky, T. Owen, C. Emerich, J. M. Lamarre, and F. Rocard, Icarus 76:404 (1988).

    Google Scholar 

  19. V. A. Krasnopolsky, A. Yu. Tkachuk, G. Moreels, and M. Gogoshev, Astron. Astrophys. 203:175 (1988).

    Google Scholar 

  20. A. Korth, M. L. Marconi, D. A. Mendis, F. R. Krueger, A. K. Richter, R. P. Lin, D. L. Mitchell, K. A. Anderson, C. W. Carlson, H. Rème, J. A. Sauvaud, and C. d'Uston, Nature 337:53 (1989).

    Google Scholar 

  21. J. F. Crifo, Icarus 84:414 (1990).

    Google Scholar 

  22. H. P. Larson, H.-Y. Hu, M. J. Mumma, and H. A. Weaver, Icarus 86:29 (1990).

    Google Scholar 

  23. M. A. Disanti, U. Fink, and A. B. Schultz, Icarus 86:152 (1990).

    Google Scholar 

  24. F. Scherb, K. Magee-Sauer, F. L. Roesler, and J. Harlander, Icarus 86:72 (1990).

    Google Scholar 

  25. J. F. Crifo, Proc. 17th Int. Symp. Rarefied Gas Dynam. (Aachen, 1990).

  26. G. S. Kell, G. E. McLaurin, and E. Whalley, J. Chem. Phys. 48:3805 (1968).

    Google Scholar 

  27. G. S. Kell and G. E. McLaurin, J. Chem. Phys. 51:4345 (1969).

    Google Scholar 

  28. H. A. Gebbie, W. J. Burroughs, J. Chamberlain, J. E. Harries, and R. G. Jones, Nature 221:143 (1969).

    Google Scholar 

  29. F. T. Greene, T. A. Milne, A. E. Vandergrift, and J. Beachey, Chem. Abstr. 72:93891r, 115230d (1970).

    Google Scholar 

  30. G. E. Ashwell, P. A. Eggett, R. Emery, and H. A. Gebbie, Nature 247:196 (1974).

    Google Scholar 

  31. L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys. 71:2703 (1979).

    Google Scholar 

  32. L. A. Curtiss, D. J. Frurip, and M. Blander, in Water and Steam, Their Properties and Current Idustrial Applications, J. Straub and K. Scheffler eds. (Pergamon Press, Oxford, 1980), p. 521.

    Google Scholar 

  33. J. P. O'Connell and J. M. Prausnitz, Ind. Eng. Chem. Fundam. 8:453 (1969).

    Google Scholar 

  34. J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Chem. Thermodyn. 3:195 (1971).

    Google Scholar 

  35. R. W. Bolander, J. L. Kassner, Jr., and J. T. Zung, J. Chem. Phys. 50:4402 (1969).

    Google Scholar 

  36. C. Braun and H. Leidecker, J. Chem. Phys. 61:3104 (1974).

    Google Scholar 

  37. J. C. Owicki, L. L. Shipman, and H. A. Scheraga, J. Phys. Chem. 79:1794 (1975); 79:3081 (1975).

    Google Scholar 

  38. Z. Slanina, J. Chem. Phys. 73:2519 (1980).

    Google Scholar 

  39. Z. Slanina, Collect. Czech. Chem. Commun. 45:3417 (1980).

    Google Scholar 

  40. Y. J. Park, Y. K. Kang, B. J. Yoon, and M. S. Jhon, Bull. Korean Chem. Soc. 3:50 (1982).

    Google Scholar 

  41. J. R. Reimers, R. O. Watts, and M. L. Klein, Chem. Phys. 64:95 (1982).

    Google Scholar 

  42. J. E. Del Bene, H. D. Mettee, M. J. Frisch, B. T. Luke, and J. A. Pople, J. Phys. Chem. 87:3279 (1983).

    Google Scholar 

  43. A. A. Vigasin, Chem. Phys. Lett. 117:85 (1985).

    Google Scholar 

  44. Z. Slanina, Chem. Phys. Lett. 127:67 (1986).

    Google Scholar 

  45. Z. Slanina, J. Mol. Struct. 177:459 (1988).

    Google Scholar 

  46. H. L. Lemberg and F. H. Stillinger, J. Chem. Phys. 62:1677 (1975).

    Google Scholar 

  47. A. Rahman, F. H. Stillinger, and H. L. Lemberg, J. Chem. Phys. 63:5223 (1975).

    Google Scholar 

  48. F. H. Stillinger and A. Rahman, J. Chem. Phys. 68:666 (1978).

    Google Scholar 

  49. P. Bopp, G. Jancsó, and K. Heinzinger, Chem. Phys. Lett. 98:129 (1983).

    Google Scholar 

  50. G. Jancsó, P. Bopp, and K. Heinzinger, Chem. Phys. 85:377 (1984).

    Google Scholar 

  51. K. Heinzinger, P. Bopp, and G. Jancsó, Acta Chim. Hung. 121:27 (1986).

    Google Scholar 

  52. G. D. Carney, L. A. Curtiss, and S. R. Langhoff, J. Mol. Spectr. 61:371 (1976).

    Google Scholar 

  53. O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64:1351 (1976).

    Google Scholar 

  54. D. G. Bounds, Chem. Phys. Lett. 96:604 (1983).

    Google Scholar 

  55. V. Carravetta and E. Clementi, J. Chem. Phys. 81:2646 (1984).

    Google Scholar 

  56. G. C. Lie and E. Clementi, Phys. Rev. A 33:2679 (1986).

    Google Scholar 

  57. R. J. Bartlett, I. Shavitt, and G. D. Purvis III, J. Chem. Phys. 71:281 (1979).

    Google Scholar 

  58. R. O. Watts, Chem. Phys. 26:367 (1977).

    Google Scholar 

  59. J. R. Reimers and R. O. Watts, Chem. Phys. 85:83 (1984).

    Google Scholar 

  60. J. R. Reimers and R. O. Watts, Mol. Phys. 52:357 (1984).

    Google Scholar 

  61. Z. Slanina, Chem. Phys. Lett. 172:367 (1990).

    Google Scholar 

  62. G. S. Kell, G. E. McLaurin, and E. Whalley, Proc. Roy. Soc. (London) A 425:49 (1989).

    Google Scholar 

  63. Z. Slanina, Collect. Czech. Chem. Commun. 42:3229 (1977).

    Google Scholar 

  64. J. S. Pickett, N. D'Angelo, and W. S. Kurth, J. Geophys. Res. A 94:12081 (1989).

    Google Scholar 

  65. C. P. Pike, D. J. Knecht, R. A. Viereck, E. Murad, I. L. Kofsky, M. A. Maris, N. H. Tran, G. Ashley, L. Twist, M. E. Gersh, J. B. Elgin, A. Berk, A. T. Stair Jr., J. P. Bagian, and J. F. Buchli, Geophys. Res. Lett. 17:139 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slanina, Z., Crifo, J.F. A refined evaluation of the gas-phase water-dimerization equilibrium constant within non-rigid BJH- and MCY-type potentials. Int J Thermophys 13, 465–476 (1992). https://doi.org/10.1007/BF00503883

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503883

Key words

Navigation