Skip to main content
Log in

Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure, which is also described. The non-equilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo timecorrelation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, the extensive discussion by S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  2. See the extensive review by J. R. Dorfman and H. van Beijeren in Modern Theoretical Chemistry, Vol. 6, Statistical Mechanics, Part B, Time-Dependent Processes, B. J. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  3. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18:988 (1967); Phys. Rev. A 1:18 (1970).

    Google Scholar 

  4. J. J. Erpenbeck and W. W. Wood, J. Stat. Phys. 24:455 (1981); Phys. Rev. A 26:1648 (1982); Phys. Rev. A 32:412 (1985).

    Google Scholar 

  5. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25:1257 (1970); Phys. Rev. A 6:776 (1972); Phys. Rev. A 12:292 (1975).

    Google Scholar 

  6. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. Lett. 25:1254 (1970); Phys. Rev. A 4:2055 (1971); J. Stat. Phys. 15:7 (1976); J. Stat. Phys. 15:23 (1976).

    Google Scholar 

  7. For a review of early nonequilibrium molecular dynamics work, see W. G. Hoover and W. T. Ashurst, Theoretical Chemistry: Advances and Perspectives, H. Eyring and D. Henderson, eds. (Academic Press, New York, 1975).

    Google Scholar 

  8. W. G. Hoover, Physica 118A:111 (1983).

    Google Scholar 

  9. D. J. Evans and G. P. Morriss, Comp. Phys. Rep. 1:299 (1984).

    Google Scholar 

  10. J. J. Erpenbeck and W. W. Wood, in Modern Theoretical Chemistry, Vol. 6, Statistical Mechanics Part B: Time-Dependent Processes, B. J. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  11. J. M. Kincaid and J. J. Erpenbeck, J. Chem. Phys. (in press).

  12. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960).

    Google Scholar 

  13. J. M. Kincaid, M. Lopez de Haro, and E. G. D. Cohen, J. Chem. Phys. 79:4509 (1983).

    Google Scholar 

  14. A. Hald, Statistical Theory with Engineering Applications (John Wiley and Sons, New York, 1952).

    Google Scholar 

  15. H. S. Green, J. Math. Phys. 2:344 (1961).

    Google Scholar 

  16. Y. Pomeau, J. Chem. Phys. 57:2800 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erpenbeck, J.J., Kincaid, J.M. Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics. Int J Thermophys 7, 305–317 (1986). https://doi.org/10.1007/BF00500157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500157

Key words

Navigation