Skip to main content
Log in

Selective sequestration of milkweed (Asclepias sp.) cardenolides inOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The cardenolide content of the gut, wings, and fat body ofOncopeltus fasciatus was examined. The female fat body contained 4–5% of the total cardenolide content of the insect. The cardenolide content of male fat body, and gut and wings of both sexes was below the detection limit of the cardenolide assay. Thin-layer chromatography was used to determine the cardenolide array of various tissues and secretions ofO. fasciatus reared on seeds of a single species of milkweed (A. Speciosa) and adult extracts and dorsolateral space fluid ofO. fasciatus reared on seeds of two species of milkweed with different cardenolide arrays (A. speciosa andA. syriaca). Our results indicate that cardenolides are not sequestered in the insect simply on the basis of polarity and that metabolism and differential excretion of cardenolides are involved in the sequestration of cardenolides inO. fasciatus. The similarities in the cardenolide profiles ofO. fasciatus reared on different food sources, and tissues ofO. fasciatus reared on a single food source indicates that there is regulation of the cardenolide array inO. Fasciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berridge, M.J. 1966. Metabolic pathways of isolated Malpighian tubules of the blowfly functioning in an artificial medium.J. Insect Physiol. 12:1523–1538.

    Google Scholar 

  • Blum, M.S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Blum, M.S. 1983. Detoxication, deactivation, and utilization of plant compounds of insects, Chapter 15, pp. 265–275,in P.A. Hedin (ed.).Plant Resistance to Insects. American Chemical Soc. Symposium Series No. 208, Washington, D.C.

  • Brooks, G.T. 1976. Penetration and distribution of insecticides, pp. 3–58,in C.F. Wilkinson (ed.). Insecticide Biochemistry and Physiology. Plenum Press, New York.

    Google Scholar 

  • Brower, L.P., andGlazier, S.C. 1975. Localization of heart poisons in the monarch butterfly.Science 188:19–25.

    Google Scholar 

  • Brower, L.P., andMoffitt, C.M. 1974. Palatability dynamics of cardenolides in the monarch butterfly.Nature 249:280–283.

    Google Scholar 

  • Brower, L.P., Edmunds, M., andMoffitt, C.M. 1975. Cardenolide content and palatability of a population ofDanaus chrysippus butterflies from West Africa.J. Entomol. Ser, A. Physiol. Behav. 49:183–196.

    Google Scholar 

  • Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California.J. Chem. Ecol. 8:579–633.

    Google Scholar 

  • Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andHolland, M.M. 1984. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L. reared on milkweed plants in California: 2.Asclepias speciosa. J. Chem. Ecol. 10:601–639.

    Google Scholar 

  • Chaplin, S.J., andChaplin, S.B. 1981. Growth dynamics of a specialized milkweed seed feeder (Oncopeltus fasciatus) on seeds of familiar and unfamiliar milkweeds (Asclepias spp.).Entomol. Exp. Appl. 29:345–356.

    Google Scholar 

  • Detweiler, D.K. 1967. Comparative pharmacology of cardiac glycosides.Fed. Proc. 26:1119–1124.

    Google Scholar 

  • Duffey, S.S. 1977. Arthropod allomones: Chemical effronteries and antagonists. 15th International Congress of Entomology, Washington, D.C., August 1976, pp. 323–394.

  • Duffey, S.S. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol.s 25:447–477.

    Google Scholar 

  • Duffey, S.S., andScudder, G.G.E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly colored Hemiptera and Coleoptera.J. Insect Physiol. 18:63–78.

    Google Scholar 

  • Duffey, S.S., andScudder, G.G.E. 1974. Cardiac glycosides inOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). I. The uptake and distribution of natural cardenolides in the body.Can. J. Zool. 52:283–290.

    Google Scholar 

  • Duffey, S.S., Blum, M.S., Isman, M.B., andScudder, G.G.E. 1978. Cardiac glycosides: A physical system for their sequestration by the milkweed bug.J. Insect Physiol. 24:639–645.

    Google Scholar 

  • Feir, D., andSuen, J. 1971. Cardenolides in the milkweed plant and feeding by the milkweed bug.Ann. Entomol. Soc. Am. 64:1173–1174.

    Google Scholar 

  • Isman, M.B. 1977. Dietary influence of cardenolides on larval growth and development of the milkweed bugOncopeltus fasciatus.J. Insect Physiol. 23:1183–1187.

    Google Scholar 

  • Isman, M.B., Duffey, S.S., andScudder, G.G.E. 1977. Variation in cardenolide content of the lygaeid bugs,Oncopeltus fasciatus andLygaeus kalmii kalmii and of their milkweed hosts (Asclepias spp.) in central California.J. Chem. Ecol. 3:613–624.

    Google Scholar 

  • Kilby, B.A. 1963. The biochemistry of the insect fat body, pp. 111–174,in J.W.L. Beament, J.E. Treherne, and V.B. Wigglesworth (eds.). Advances in Physiology, Vol. 7. Academic Press, London.

    Google Scholar 

  • Lessvey, B. 1983. Plant allelochemicals and the evolution of host-plant relationships in the genusSpilostethus. PhD thesis. University of Witwatersrand, Johannesburg. 205 pp.

    Google Scholar 

  • Marty, M.A., andKreiger, R.I. 1984. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae,Danaus plexippus L.J. Chem. Ecol. 10:945–956.

    Google Scholar 

  • Meredith, J.,Moore, L., andScudder, G.G.E. 1984. The excretion of ouabain by the Maipighian tubules ofO. fasciatus. Am. J. Physiol. 246(Regulatory Integrative Comp. Physiol. 15):R705–R715.

  • Nishio, S., Blum, M.S., andTakahashi, S. 1983. Intraplant distribution of cardenolides inAsclepias humistrata (Asclepiadaceae), with additional notes on their fates inTetraopes melanurus (Coleoptera: Cerambycidae) andRhyssomatus lineaticollis (Coleoptera: Curculionidae).Mem. Coll. Agric. Kyoto Univ. 122:43–52.

    Google Scholar 

  • Roeske, C.M., Seiber, J.N., Brower, L.P., andMoffitt, C.M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.).Recent Adv. Phytochem. 10:93–167.

    Google Scholar 

  • Scudder, G.G.E. andMeredith, J. 1982a. Morphological basis of cardiac glycoside sequestration byOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae).Zoomorphology (Berl.) 99:87–101.

    Google Scholar 

  • Scudder, G.G.E., andMeredith, J. 1982b. The permeability of the midgut of three insects to cardiac glycosides.J. Insect Physiol. 28(8):689–694.

    Google Scholar 

  • Seiber, J.N., Tuskes, P.M., Brower, L.P., andNelson, C.J. 1980. Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.).J. Chem. Ecol. 6:321–339.

    Google Scholar 

  • Smith, T.W., andHaber, E. 1974. Digitalis. Little, Brown and Co., Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, L.V., Scudder, G.G.E. Selective sequestration of milkweed (Asclepias sp.) cardenolides inOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). J Chem Ecol 11, 667–687 (1985). https://doi.org/10.1007/BF00988575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988575

Key words

Navigation