Skip to main content

Advertisement

Log in

Large Helical Device (LHD) program

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The largest superconducting fusion machine, Large Helical Device (LHD), is now under construction in Japan and will begin operation in 1997. Design and construction of related R&D programs are now being carried out. The major radius of this machine is 3.9 m and the magnetic field on the plasma center is 3 T. The NbTi superconducting conductors are used in both helical coils and poloidal coils to produce this field. This will be upgraded in the second phase a using superfluid coil cooling technique. A negative ion source is being successfully developed for the NBI heating of LHD. This paper describes the present status and progress in its experimental planning and theoretical analysis on LHD, and the design and construction of LHD torus, heating, and diagnostics equipments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fujiwara, 14th International Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg 1992, Summary of Alternative Magnetic Confinement.

  2. H. Yamada, S. Morita, K. Idaet al., Plasma Physics and Controlled Nuclear Fusion Research 1992 (Proc. 14th Int. Conf. Wurzburg, 1992), Vol. 2, IAEA, Vienna (1993), p. 493; H. Yamada, K. Ida, H. Iguchiet al., Nucl. Fusion 32 (1992), 25.

    Google Scholar 

  3. F. Wagner and U. Stroth,Plasma Phys. Contr. Fusion 35 (10) (1993), 1321–1371.

    Google Scholar 

  4. O. Motojima, T. Mutoh, M. Sanoet al., Plasma Physics and Controlled Nuclear Fusion Research 1988 (Proc. 12th Int. Conf. Nice, 1988), Vol. 1, IAEA, Vienna (1989), p. 551.

    Google Scholar 

  5. V. A. Batyuk, M. A. Blokh, S. E. Grebenshchikovet al., Controlled Fusion and Plasma Physics (Proc. 11th Eur. Conf. Aachen, 1983), Vol. 7D, Part I, European Physical Society (1983) p. 373.

  6. V. A. Batyuk, M. Murakami, T. S. Bigelow, J. B. Wilgenet al., Plasma Physics and Controlled Nuclear Fusion Research 1992 (Proc. 14th Int. Conf. Wurzburg, 1992), Vol. 2, IAEA, Vienna (1933), p. 391.

    Google Scholar 

  7. T. Obiki, S. Sudo, F. Sanoet al., Plasma Physics and Controlled Nuclear Fusion Research 1992 (Proc. 14th Int. Conf. Wurzburg, 1992), Vol. 2, IAEA, Vienna (1993), p. 403.

    Google Scholar 

  8. U. Strothet al., Physical Rev. Letters,70 (1993), p. 936–939;Plasma Phys. Contr. Fusion 35 (1993), B319–332.

    Google Scholar 

  9. V. Erckmannet al., 14th International Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg, 1992, paper IAEA-CN-56/H-1-4.

  10. K. Toiet al., 14th International Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg, 1992, paper IAEA-CN-56/H-1-3.

  11. A. Iiyoshiet al., Fusion Technol. 17 (1990), 169–187.

    Google Scholar 

  12. O. Motojimaet al., 13th International Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Washington, 1990, Vol. 2 (1991), pp. 709–716; O. Motojimaet al., Fusion Eng. Design 20 (1993), 3–14.

    Google Scholar 

  13. K. Yamazakiet al., 13th International Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Washington, 1990, Vol. 3 (1991), pp. 513–523.

    Google Scholar 

  14. B. B. Kadomstsey,Tokamak Plasma; A Complex Physical System (Institute of Physics Publishing, Bristol and Philadelphia, 1992).

    Google Scholar 

  15. Wendelstein Group, WENDELSTEIN VII–X, Application for Preferential Support, IPP-EURATOM Association, 1990.

  16. A. Iiyoshi, M. Fujiwara, O. Motojima, N. Ohyabu, and K. Yamazaki,Fusion Technol. 17 (1990), 169.

    Google Scholar 

  17. K. Ichiguchi, N. Nakajima, M. Okamoto, Y. Nakamura, and M. Wakatani,Nucl. Fusion 29 (1993), 481.

    Google Scholar 

  18. S. P. Hirshman, W. I. Van Rij, and P. Merkel,Comp. Phys. Commun. 43 (1986), 143.

    Google Scholar 

  19. N. Nakajima and M. Okamoto,J. Phys. Soc. Jpn. 59 (1990), 3595.

    Google Scholar 

  20. N. Nakajima, M. Okamoto, J. Todoroki, Y. Nakamura, and M. Wakatani,Nucl. Fusion 29 (1989), 605.

    Google Scholar 

  21. N. Nakajima and M. Okamoto,J. Phys. Soc. Jpn. 61 (1992), 833.

    Google Scholar 

  22. Nakajima and M. Okamoto,J. Phys. Soc. Jpn. 60 (1991), 4146.

    Google Scholar 

  23. N. Nakajima and M. Okamoto,J. Plasmas Fusion Res. 68 (1992), 46.

    Google Scholar 

  24. N. Nakajima and M. Okamoto, and M. Fujiwara,J. Plasmas Fusion Res. 68 (1992), 503.

    Google Scholar 

  25. K. Watanabe, N. Nakajima, M. Okamoto, Y. Nakamura, and M. Wakatani,Nucl. Fusion 32 (1992), 1499.

    Google Scholar 

  26. H. Sanuki, J. Todoroki, and T. Kamimura,Phys. Fluids B 2, (1990), 2155.

    Google Scholar 

  27. J. Todoroki,J. Phys. Soc. Jpn. 59 (1990), 2758.

    Google Scholar 

  28. S. Murakami, M. Okamoto, N. Nakajima, M. Ohnishi, and H. Okada, Res. Rep. National Inst. Fusion Sci., NIFS-249, October 1993 (to be published inNucl. Fusion).

  29. K. Itoh, H. Sanuki, and S.-I. ItohNucl. Fusion 32 (1992), 1047.

    Google Scholar 

  30. M. Okamoto, S. Murakami, and N. Nakajima, Study of ICRF minority heating in a helical system, inPhysics of High Energy Particles in Toroidal Systems, T. Tajima and M. Okamoto eds., (American Institute of Physics, New York, 1994).

    Google Scholar 

  31. Y. Ogawa, T. Amano, N. Nakajimaet al., Nucl. Fusion 32 (1992), 119.

    Google Scholar 

  32. K. Itoh, K. Ichiguchi, and S.-I. Itoh,Phys. Fluids B4 (1992), 2929.

    Google Scholar 

  33. H. Sugama and W. Horton,Phys. Plasmas 1(2) (1994), 345.

    Google Scholar 

  34. K. Itoh, S.-I. Itoh, and A. Fukuyama,Phys. Rev. Lett. 69 (1992), 1050.

    Google Scholar 

  35. K. Harafuji, T. Hayashi, and T. Sato,J. Comp. Phys. 81 (1989), 169.

    Google Scholar 

  36. T. Hayashi, T. Sato, and A. Takei,Phys. Fluids B2;Plasma Phys. (1990), 115.

    Google Scholar 

  37. N. Nakajima, C. Z. Cheng, and M. Okamoto,Phys. Fluids B4(5), (1992) 115.

    Google Scholar 

  38. J. M. Greene and J. L. Johnson,Phys. Fluids 4 (1961), 875; J. L. Johnson and J. M. Greene,Phys. Fluids 4 (1961), 1417.

    Google Scholar 

  39. G. Anania, J. L. Johnson, and K. E. Weimer,Phys. Fluids 26 (1983), 2210.

    Google Scholar 

  40. G. Anania, and J. L. Johnson,Phys. Fluids 26 (1983), 3070.

    Google Scholar 

  41. Y. Nakamura, K. Ichiguchi, M. Wakatani, and J. L. Johnson,J. Phys. Soc. Jpn. 58 (1989), 3157.

    Google Scholar 

  42. J. Todoroki andJ. Phys. Soc. Jpn. 58 (1989), 3979.

    Google Scholar 

  43. K. Ichiguchi, Y. Nakamura, M. Wakatani, N. Yanagi, and S. Morimoto,Nucl. Fusion 29 (1989), 2093.

    Google Scholar 

  44. H. R. Strauss,Plasma Phys. 22 (1980), 733.

    Google Scholar 

  45. K. Ichiguchi, Y. Nakamura, and M. Wakatani,Nucl. Fusion 31 (1991), 2073.

    Google Scholar 

  46. C. Mercier,Nucl. Fusion (Suppl. Pt.2) (1962), 801.

    Google Scholar 

  47. G. Y. Fu, W. A. Cooper, R. Gruber, U. Schwenn, and D. V. Anderson,Phys. Fluids B4 (1992), 1401.

    Google Scholar 

  48. K. C. Shaing, B. A. Carreras, N. Dominguez, V. E. Lynch, and J. S. Tolliver,Phys. Fluids B1 (1989), 1663.

    Google Scholar 

  49. C. Schwab,Phys. Fluids B5 (1993), 3195.

    Google Scholar 

  50. S. Sudo, Y. Takeiri, H. Zushi, F. Sano, K. Itoh, K. Kondo, and A. Iiyoshi,Nucl. Fusion 30 (1990), 11.

    Google Scholar 

  51. J. W. Connor,Plasma Phys. Contr. Fusion 30 (1988), 619.

    Google Scholar 

  52. W. K. Hagan and E. A. Frieman,Phys. Fluids 29 (1986), 3635.

    Google Scholar 

  53. J. P. Christiansen,Nucl. Fusion 30 (1990), 1183.

    Google Scholar 

  54. M. Murakamiet al., Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 14th International Conference, Würzburg (IAEA, Vienna, 1993),2, 391.

    Google Scholar 

  55. J. G. Gorman and L. H. Th. Rietjents,Phys. Fluids 9 (1966), 2504.

    Google Scholar 

  56. A. Mohri and M. Fujiwara,Nucl. Fusion 14 (1974), 67.

    Google Scholar 

  57. K. Itoh, H. Sanuki, and S.-I. Itoh,Nucl. Fusion 32 (1992), 1047.

    Google Scholar 

  58. H. Sanuki, K. Itoh, and S.-I. Itoh,J. Phys. Soc. Jpn. 62 (1993), 123.

    Google Scholar 

  59. K. Idaet al., Phys. Fluids B3 (1991), 515;B4 (1991), 1360.

    Google Scholar 

  60. H. Idei, K. Ida, H. Sanukiet al., Phys. Rev. Lett. 71 (1993), 2220.

    Google Scholar 

  61. K. Idaet al., J. Plasma Fusion Res. 70 (1994), 514 (in Japanese).

    Google Scholar 

  62. H. Sugama, M. Okamoto, and M. Wakatani, Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 14th International Conference, Würzburg (IAEA, Vienna, 1993),2, 353.

    Google Scholar 

  63. B. A. Carreras and V. E. Lynch,Phys. Fluids B3 (1991), 1438.

    Google Scholar 

  64. H. Sugama and M. Wakatani,Phys. Fluids B3 (1991), 1110.

    Google Scholar 

  65. H. Sugama and W. Horton,Phys. Plasmas 1 (1994), 2220.

    Google Scholar 

  66. K. Itohet al., Plasma Phys. Contr. Fusion 36, (1993), in press.

  67. K. Itohet al., Plasma Phys. Contr. Fusion 36 (1994), 279; S.-I. Itohet al., Phys. Rev. Lett. 72 (1994), 1200.

    Google Scholar 

  68. K. Itohet al., Nucl. Fusion 32 (1992), 1047; H. Sanukiet al., J. Phys. Soc. Jpn. 62 (1993), 123.

    Google Scholar 

  69. K. Itohet al., Phys. Plasmas 1 (1994), 796.

    Google Scholar 

  70. C. Beidler, G. Grieger, F. Herrneggeret al., Fusion Technol. 17 (1990), 148.

    Google Scholar 

  71. K. C. Shaing and J. D. Callen,Phys. Fluids 26 (1983), 3315.

    Google Scholar 

  72. K. C. Shaing, S. P. Hirshman, and J. D. Callen,Phys. Fluids 29 (1986), 521.

    Google Scholar 

  73. M. Coronad and H. Wobic,Phys. Fluids 29 (1986), 527.

    Google Scholar 

  74. S. P. Hirshman,Phys. Fluids 26 (1983), 3553.

    Google Scholar 

  75. S. P. Hirshman and D. J. Sigmar,Nucl. Fusion 21 (1981), 1079.

    Google Scholar 

  76. A. H. Boozer,Phys. Fluids 23 (1980), 904.

    Google Scholar 

  77. S. Murakamiet al., Nucl. Fusion 34 (1994), to be published.

  78. S. Murakamiet al., Fusion Eng. Design, to be published.

  79. T. Hayashi, T. Sato, and A. Takei,Phys. Fluids B2 (1990), 329.

    Google Scholar 

  80. T. Hayashi, A. Takei, and T. Sato,Phys. Fluids B4 (1992), 1539.

    Google Scholar 

  81. T. Hayashi, Proceeding of the International Workshop on Theory of Fusion Plasmas (Varenna, 1988), CRPP-EPFL, Lausanne (1989), p. 11.

    Google Scholar 

  82. T. Hayashi, A. Takei, N. Ohyabu, and T. Sato, Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1991)2, 143.

    Google Scholar 

  83. T. Hayashi, A. Takei, N. Ohyabu, and T. Sato,Nucl. Fusion 31 (1991), 1767.

    Google Scholar 

  84. T. Hayashi, Proceeding of the International Workshop on Theory of Fusion Plasmas (Varenna, 1991), CRPP-EPFL, Lausanne (1992), p. 231.

    Google Scholar 

  85. T. Hayashi, T. Sato, W. Lotz, P. Merkel, J. Nührenberg, U. Schwenn, and E. Strumberger, Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1993),2, 29.

    Google Scholar 

  86. T. Hayashi, T. Sato, P. Merkel, J. Nührenberg, and U. Schwenn,Phys. Plasmas 1 (1994), 262.

    Google Scholar 

  87. T. Hayashi, T. Sato, H. J. Gardner, and J. D. Meiss,Phys. Plasmas 2 (1995), 752.

    Google Scholar 

  88. A. Bhattacharjee, T. Hayashi, C. C. Hegna, N. Nakajima, and T. Sato,Phys. Plasmas 2 (1995), 883.

    Google Scholar 

  89. O. Motojima, Design status of superconducting Large Helical Device.IEEE Trans. Magn. 27 (1991), 2214–2219.

    Google Scholar 

  90. J. Yamamoto, T. Mito, K. Takahata, S. Yamada, N. Yanagi, I. Ohtake, A. Nishimura, and O. Motojima, Superconducting test facility of NIFS for Large Helical Device.Fusion Eng. Design 20(11) (1993), 147–151.

    Google Scholar 

  91. J. Yamamoto, T. Mito, K. Takahata, N. Yanagi, S. Yamada, I. Ohtake, E. Tada, S. Kashihara, K. Shinkai, H. Yamamura, M. Takamatsu, and M. Taneda, A cryogenic system for the superconducting magnet testing facility.Adv. Cryo. Eng. 37A (1992), 755–762.

    Google Scholar 

  92. S. Yamada, T. Mito, S. Tanahashi, K. Takahata, N. Yanagi, M. Sakamoto, A. Nishimura, J. Yamamoto, and O. Motojima, Characteristics of DC 75 kA power supply in the superconducting magnet test facilities.Fusion Eng. Design 20 (1993), 201–209.

    Google Scholar 

  93. T. Mito, K. Takahata, N. Yanagi, S. Yamada, J. Yamamoto, T. Ueda, K. Sakaki, I. Itoh, Y. Yasukawa, and K. Ueda, Development of high current vapor-cooled current leads for large superconductor critical current measuring.IEEE Trans. Magn. 28 (1992), 960–963.

    Google Scholar 

  94. A. Nishimura, T. Mito, H. Tamura, K. Takahata, N. Yanagi, M. Sakamoto, S. Yamada, J. Yamamoto, and O. Motojima, Rigidity tests of a superconducting coil at 4.2 K simulated for the helical coil on the LHD program.Fusion Eng. Design 20 (1993), 211–216.

    Google Scholar 

  95. T. Mito, J. Yamamoto, K. Takahata, N. Yanagi, O. Motojima, Development of superconducting conductors.IEEE Trans. Magn. 27 (1991), 2224–2227.

    Google Scholar 

  96. N. Yanagi, K. Takahata, T. Mito, J. Yamamoto, O. Motojima, R. Saito, S. Suzuki, F. Iida, and H. Ogata, Design and fabrication of pool cooled helical coil as an R&D program for Large Helical Device.IEEE Trans. Magn. 27 (1991), 2357–2360.

    Google Scholar 

  97. K. Takahata, N. Yanagi, T. Mito, J. Yamamoto, and O. Motojima, Design and fabrication of forced-flow coils as an R&D program for Large Helical Device.IEEE Trans. Magn. 27 (1991), 2353–2356.

    Google Scholar 

  98. T. Mito, K. Takahata, N. Yanagi, S. Yamada, A. Nishimura, M. Sakamoto, and J. Yamamoto, Short sample tests of full-scale superconducting conductors for Large Helical Device.IEEE Trans. Magn. 28 (1992), 214–217.

    Google Scholar 

  99. T. Mito, K. Takaha, N. Yanagi, S. Yamada, M. Sakamoto, A. Nishimura, and J. Yamamoto, Short sample tests of aluminum stabilized superconductors for Large Helical Device.Fusion Eng. Design 20 (1993), 233–242.

    Google Scholar 

  100. A. Nishimura, H. Tamura, T. Mito, K. Takahata, N. Yanagi, M. Sakamoto, S. Yamada, and J. Yamamoto, Cryogenic compressive deformation properties of superconducting coil packs simulated for Helical coils on LHD program.Cryogenics 32 (1992), 376–379.

    Google Scholar 

  101. K. Takahata et al., Stability of cable-in conduit superconductors for large helical device,IEEE Trans. Appl. Supercond. 3 (1993), 511–514.

    Google Scholar 

  102. K. Takahata et al., Stability tests of the Nb−Ti cable-in-conduit superconductor with bare strands for demonstration of the large helical device poloidal field coils,IEEE Trans. Magn. 30 (1994), 1705–1709.

    Google Scholar 

  103. T. Mito, J. Yamamoto, O. Motojima, K. Takahata, M. Takeo, Y. Tuda, T. Obiki, and A. Iiyoshi, Excitation Tests of the First Superconducting Helical Coils as an R&D Program of Large Helical Device, Proc. MT-11, pp. 783–788.

  104. T. Senba, S. Suzuki, T. Masumoto, T. Yamagiwa, S. Watanabe, N. Yanagi, K. Takahata, T. Mito, J. Yamamoto, and O. Motojima, Design and construction of the helical R&D coil (TOKIHB).Fusion Eng. Design 20 (1993), 195–200.

    Google Scholar 

  105. J. Yamamoto, K. Takahata, T. Mito, N. Yanagi, S. Yamada, A. Nishimura, M. Sakamoto, O. Motojima, and M. Fujiwara, Forcecooled Nb−Ti poloidal test coil for Large Helical Device.Cryogenics 32 (1992), 445–449.

    Google Scholar 

  106. T. Mito, J. Yamamoto, K. Takahata, N. Yanagi, O. Motojima, T. Ichihara, K. Toyoda, T. Minato, and T. Sasaki, Design and fabrication of module coil as an R&D program for Large Helical Device.IEEE Trans. Magn. 27 (1991), 2361–2364.

    Google Scholar 

  107. T. Mito, S. Yamada, K. Takahata, N. Yanagi, H. Chikaraishi, A. Nishimura, S. Tanahashi, O. Motojima, and J. Yamamoto, Development and tests of a flexible superconducting bus-line for the Large Helical Device.IEEE Trans. Magn. 30 (1994), to be published.

  108. P. W. Eckels, N. C. Iyer, A. Patterson et al., Magnetoresistance; the Hall effect in composite aluminum cryoconductors.Cryogenics 29 (1989), 748.

    Google Scholar 

  109. H. Kaneko and N. Yanagi, Enhancement of magnetoresistance due to Hall current in aluminum-copper composite.Cryogenics 32 (1992), 1114.

    Google Scholar 

  110. H. Kaneko, Insulation of highly conductive metal in composite stabilizer for reduction of Hall current across surface.Cryogenics 33 (1993), 1077.

    Google Scholar 

  111. N. Yanagi, T. Mito, K. Takahata et al., Experimental observation of anomalous magnetoresistivity in 10–20 kA class aluminum-stabilized superconductors for the Large Helical Device.Adv. Cryo. Eng.-Mater. 40 (1994), 459.

    Google Scholar 

  112. K. Takahata et al., Experimental results of the R&D forced-flow poloidal coil (TOKI-PF).Fusion Eng. Design 20 (1993), 161–166.

    Google Scholar 

  113. H. Tamura, A. Nishimura, S. Imagawa, T. Satow, J. Yamamoto, O. Motojima and the LHD Design Group, Structural design of the cryostat for the LHD.Fusion Eng. Design 20, (1993), 97–101.

    Google Scholar 

  114. S. Imagawa, H. Tamura, K. Yamazaki, T. Satow, J. Yamamoto, O. Motojima, and LHD design group, Design analysis of electromagnetic forces on the Large Helical Device.Fusion Eng. Des. 20 (1993), 87–95.

    Google Scholar 

  115. S. Imagawa, H. Hayashi, H. Tamura, A. Nishimura, T. Satow, J. Yamamoto, O. Motojima, and the LHD group, structural analysis of the Large Helical Device.Adv. Cryog. Eng. 39 (1994), 309–316.

    Google Scholar 

  116. A. Nishimura, H. Tamura, S. Imagawa, T. Mito, K. Takahata, J. Yamamoto, S. Mizumaki, H. Ogata, and H. Takano, Experimental Rigidity Evaluation of Conduit Pack for Forced Flow Superconducting Coil, CEC/ICMC (1993), BZ-6.

  117. J. W. Chan, J. Glazer, Z. Mei, and J. W. Morris, Jr.,Adv. Cryo. Eng. Mater. 36 (1990), 1299.

    Google Scholar 

  118. K. Shibata,Cryo. Eng. 26(4) (1991), 251.

    Google Scholar 

  119. J. Winter et al.,J. Nucl. Mater. 162–164 (1989), 713.

    Google Scholar 

  120. N. Noda et al.,J. Nucl. Mater. 220–222 (1995), 623.

    Google Scholar 

  121. N. Noda et al.,Fusion Technology 1992, (Proc. 17th SOFT, Rome) (Elsevier Science Publishers, Amsterdam, 1993) p. 325.

    Google Scholar 

  122. N. Ohyabu et al.,J. Nucl. Mater. 196–198 (1992), 276.

    Google Scholar 

  123. N. Ohyabu et al.,Nucl. Fusion 34 (1994), 387.

    Google Scholar 

  124. K. Fujii et al., Preliminary design of the vacuum system for the LHD cryostat. Fusion Eng. Design20 (1993), 103.

    Google Scholar 

  125. K. Akaishi et al. Measurement of outgassing rates of polyester and polyimide films for vacuum thermal insulation.J. Vac. Soc. Jpn. 37 (1994), 56 (in Japanese); K. Akaishiet al., Technical note.J. Vac. Soc. Jpn. (1994) (in Japanese), submitted.

    Google Scholar 

  126. K. Akaishiet al., Scaling law of outgassing rate with a pumping parameter. 41th National Symposium of American Vaccum Society (1994), submitted.

  127. S. Satoh, et al.,Cryogenics 34 (ICEC 15 Proceeding Suppl.) (1994), 95/98.

    Google Scholar 

  128. T. Mito, K. Takahata, S. Yamada, J. Yamamoto, T. Uede, and M. Ikeda, Conceptual design and developmental of a superconducting bus-line for the Large Helical Device.Fusion Eng. Design 20 (1993), 113–120.

    Google Scholar 

  129. K. Yamazakiet al., Proc. Int. Conf. on Accelerator and Large Experimental Physics Control Systems (KEK proceedings 92-15, 1992), p. 228.

  130. H. Kaneko et al.,Fusion Eng. Design 20 (1993), 121.

    Google Scholar 

  131. K. Yamazaki et al.,Nucl. Instr. Meth. Phys. Res. A352 (1994), 43.

    Google Scholar 

  132. C. K. Chiang, The absolute thermopower of some low temperature thermocouple wires in high transverse magnetic field.Rev. Sci. Instr. 45 (1974), 985.

    Google Scholar 

  133. R. W. Willekers, F. Mathu, H. C. Meijer, and H. Postma, Thick film thermometers with predictable R-T characteristics and very low magnetoresistance below 1 K.Cryogenics 30 (1990), 315.

    Google Scholar 

  134. T. Yotsuya, M. Yoshitake, Y. Suzuki, and S. Ogawa, Thin Film Thermometer with Small Magnetoresistance,Cryogenic Eng. Conf., '93, and private communication from LakeShore.

  135. S. Yamaguchiet al., Development of Insulation Amplifier in Magnetic Field, 51th Annual Meeting on Cryogenics and Superconductivity Japan (1994), p. 226.

  136. Y. Nakamura and M. Wakatani, Research Report in Plasma Physics Laboratory Kyoto University PPLK-R-24 (1988).

  137. S. L. Milora, S. K. Combs, M. J. Gouge, and R. W. Kincaid, ORNL Report TM-11561 (1990).

  138. S. Sudo, M. Kanno, H. Kanekoet al., 15th Symposium on Fusion Energy (Cape Cod, U.S.A., 1993), 1-PA-3.

  139. S. Sudo,J. Plasma Fusion Res. 69 (1993), 1349.

    Google Scholar 

  140. K. N. Sato, M. Onozuka, Y. Oda, H. Sakakita, R. Liang, S. Sudo, H. Kaneko, M. Sakamoto, and S. Goto, Proc. of 15th Symposium on Fusion Engineering (Hyannis, MA, Oct. 11–15, 1993), Vol. 1 (1994), p. 40.

    Google Scholar 

  141. K. N. Sato, S. Kogoshi, H. Akiyama, M. Sakamoto, J. Boedoet al., 18th Europ. Conf. on Controlled Fusion and Plasma Physics (Berlin, June 3–7, 1991) p. I-333.

  142. M. Sakamoto, K. N. Sato, Y. Ogawa, K. Kawahata, S. Okajima et al.,Plasma Phys. Contr. Fusion 33 (1991), 583.

    Google Scholar 

  143. K. N. Sato, H. Sakakita, R. Liang, Y. Hamada, K. Ida, M. Sakamoto, Y. Kano and JIPP T-IIU Group, 1994 International Conference on Plasma Physics, Vol. 1 (Iguacu, 1994), p. 93.

  144. R. Liang, H. Sakakita, K. N. Sato, M. Sakamoto, Y. Kano, and Torus Exp. Group, 12th Annual Meeting of the Japan Society of Plasma Science and Nuclear Fusion Research (Fukuoka, March 21–23, 1995), 22aA7.

  145. W. Obert, P. H. Rebut, and G. Duesing,Proc. 9th Symp. on Engineering Problems of Fusion Research, Chicago (1981), pp. 1390–1393.

  146. Y. Oka, K. Sakurai, O. Kaneko and T. Kuroda,Proc. 13th Symp. on Fusion Technology, Varese (1984), pp. 565–570.

  147. O. Kaneko, A. Ando, T. Kuroda, Y. Oka, Y. Takeiri, K. Tsumori, K. Yamamoto, K. Wakabayashi, Y. Iwasa, and T. Kai,Fusion Eng. Design 20 (1993), 519–524.

    Google Scholar 

  148. S. R. Walther, K. N. Leung, and W. B. Kunkel,J. Appl. Phys. 64 (1988), 3424.

    Google Scholar 

  149. Y. Mori, T. Okuyama, A. Takagi, and D. Yuan,Nucl. Instr. Meth. A301 (1991), 1.

    Google Scholar 

  150. Y. Okumura, M. Hanada, T. Inoue, H. Kojima, Y. Matsuda, Y. Ohara, Y. Oohara, M. Seki, Y. Suzuki, and K. Watanabe,Proc. 16th Symp. on Fusion Technology, London (1990), p. 1026.

  151. A. Ando, K. Tsumori, Y. Takeiri, O. Kaneko, Y. Oka, T. Okuyama, H. Kojima, Y. Yamashita, R. Akiyama, T. Kawamoto, K. Mineo, T. Kurata, and T. Kuroda,Proc. 6th Int'l. Symp. on Production and Neutralization of Negative Ions and Beams, Brookhaven (1992), p. 339.

  152. A. Ando, K. Tsumori, Y. Oka, O. Kaneko, Y. Takeiri, E. Asano, T. Kawamoto, R. Akiyama, and T. Kuroda,Phys. Plasmas 1 (1994), 2813–2815.

    Google Scholar 

  153. A. Ando, K. Tsumori, Y. Takeiri, O. Kaneko, Y. Oka, M. Okamoto, T. Amano, N. Nakajima, S. Murakami, E. Asano, R. Akiyama, T. Kawamoto, and T. Kuroda,Presented in the 21st EPS Conference on Controlled Nuclear Fusion and Plasma Physics, Montpelier (1994).

  154. Y. Oka, Y. Takeiri, O. Kaneko, A. Ando, K. Tsumori, R. Akiyama, T. Kawamoto, and T. Kuroda,Proc. 5th Int'l. Toki Conf. on Plasma Physics and Controlled Nuclear Fusion, Toki (1993).

  155. Y. Takeiri, T. Takanashi, O. Kaneko, Y. Oka, A. Ando, K. Tsumori, and T. Kuroda,Proc. 5th Int'l. Toki Conf. on Plasma Physics and Controlled Nuclear Fusion, Toki (1993).

  156. S. Kubo, H. Idei, M. Hosokawa, Y. Takita, and CHS Group,Strong Microwaves in Plasmas, 1990, Suzdal, Vol. 1 (IAP Nizhny Novogrod, 1991), p. 180.

    Google Scholar 

  157. H. Hsuan et al.,Proc. of 4th Int. Symp. on Heating in Toroidal Plasmas, Rome, Vol. II (International School of Plasma Physics, Varenna, 1984), p. 809.

    Google Scholar 

  158. F. Sardeiet al., inProc. of 17th EPS Conf. on Controlled Fusion and Plasma Heating, Amsterdam (1990), Vol. 14B, part II, p. 471.

  159. H. Zushi, et al.,Nucl. Fusion 28 (1988), 1801.

    Google Scholar 

  160. H. Idei et al.,Fusion Eng. Design 26 (1995), 167.

    Google Scholar 

  161. H. Idei et al.Phys. Plasmas 1 (1994), 3400.

    Google Scholar 

  162. H. E. Mynick and W. N. G. Hitchon,Nucl. Fusion 23 (1983), 1053.

    Google Scholar 

  163. L. M. Kovrizhnykh,Nucl. Fusion 24 (1984), 435.

    Google Scholar 

  164. D. E. Hastings, W. A. Houlberg, and K. C. Shaing,Nucl. Fusion 25 (1985), 445.

    Google Scholar 

  165. K. Kondo et al.Rev. Sci. Instr. 59 (1988), 1533.

    Google Scholar 

  166. H. Wobig, H. Maassberg, and H. Renner, The WVII-A Team, the ECRH Group and the NI Group,Plasma Physics and Controlled Nuclear Fusion Research, 1986, Kyoto, Vol. II (IAEA, Vienna, 1987), p. 369.

    Google Scholar 

  167. S. C. Acetoet al., Proc. of 19th EPS Conf. on Controlled Fusion and Plasma Physics, Innsbruck (1992), Vol. 16C, part I, p. 529.

    Google Scholar 

  168. K. Ida, H. Yamada, H. Iguchi, S. Hidekuma, H. Sanuki, K. Yamazaki, and the CHS Group,Phys. Fluids 3 (1991), 515;B4 (1992), 1360.

    Google Scholar 

  169. H. Idei et al.Phys. Rev. Lett. 71 (1993), 2220.

    Google Scholar 

  170. K. Toi et al.,Plasma Physics and Controlled Nuclear Fusion Research, 1992, Würburg, Vol. II (IAEA, Vienna, 1993), p. 461.

    Google Scholar 

  171. U. Gasparinoet al., Theory of Fusion Plasma (Varenna, 1990), p. 195.

  172. V. Erckmann et al.,Phys. Rev. Lett. 70 (1993), 2086.

    Google Scholar 

  173. K. Ohkubo, S. Kubo, M. Sato, H. Idei, T. Shimozuma, Y. Takita, and T. Kuroda,Proc. of 8th Joint Workshop on ECE and ECRH (Gut Ising, Germany, 1992), p. 561.

  174. M. Iima, M. Sato,et al., Conf. Digest 14th Int. Conf. on Infrared and Millimeter Waves (Wurzburg, 1989), p. 405.

  175. N. Aeksandorov et al.,Int. J. Infrared Millimeter Waves 13 (1992), 1369.

    Google Scholar 

  176. Russian mode converter patent description.

  177. J. Doane,Infrared and Millimeter Waves, Vol. 13, Chap. 5 (Academic Press, New York, 1985).

    Google Scholar 

  178. K. Ohkubo, S. Kubo, M. Sato, H. Idei, Y. Takita, and T. Kuroda, 5th Int. Toki Conf.J. Fusion Eng. Design 26 (1995) 325.

    Google Scholar 

  179. K. Ohkubo, S. Kubo, M. Iwase, H. Idei, M. Sato, Y. Takita, and T. Kuroda,Int. J. Infrared Millimeter Waves 15 (9) (1994), 1507.

    Google Scholar 

  180. K. Ohkubo, M. Hosokawa, S. Kubo, M. Sato, Y. Takita, and T. Kuroda,Conf. Digest 16th Int. Conf. on Infrared and Millimeter Waves (1991), p. 546.

  181. A. Cavallo, J. Doane, R. Cutler, and J. Brenner,Proc. 7th Joint Workshop on ECE and ECRH, Hefei, China (1989);Conf. Digest 13th Int. Conf. on Infrared and Millimeter Waves (1988), p. 113.

  182. Y. Aoki and S. Ishizuka,Inst. Elect. Comm. Jpn. 57-B(1974), 511 (in Japanese).

    Google Scholar 

  183. A. Yariv,Quantum Electronics (John Wiley & Sons, New York, 1975).

    Google Scholar 

  184. T. Mutoh, R. Kumazawa, T. Watari et al.,Proc. 14th IEEE Symposium on Fusion Engineering, Sandiego (1991), Vol. 1, p. 103.

    Google Scholar 

  185. A. Fukuyama, N. Okazaki, and A. Goto,Nucl. Fusion 26 (1986). 151.

    Google Scholar 

  186. K. Nishimura, R. Kumazawa, T. Mutoh et al.,Proc. of 5th Toki Conference, Toki, (1993), Vol. 16, p. 16;High Power ICRF Heating in CHS (stand alone mode).

    Google Scholar 

  187. S. Okamura, K. Matsuoka, K. Nishimuraet al., NIFS-280 (Research Report in NIFS),High Beta Discharges with Neutral Beam Injection in CHS.

  188. R. Kumazawa, K. Nishimura, S. Masudaet al., Proc. European Conf. (1994), to be published.

  189. T. Seki, R. Kumazawa, Y. Takase et al.,Nucl. Fusion 31 (1991), 1369.

    Google Scholar 

  190. T. Watari, R. Kumazawa, T. Seki et al.,Proc. 14th International Conference on Plasma Physics and Controlled Nuclear Fusion Research (1992), Wurtsburg, Vol. 1, p. 675.

    Google Scholar 

  191. T. Mutoh, R. Kumazawa, T. Sekiet al., inProc. of 5th Toki Conference, Toki (1993),Development of Steady State ICRF Heating for LHD.

  192. R. Kumazawa, T. Watari, T. Mutohet al., Fusion Technology,Proc. 17th Symposium on Fusion Technology, Rome (1992), North-Holland, p. 554.

  193. T. Watari, T. Hattori, R. Kumazawa et al.,Phys. Fluids 21 (1978), 2076; T. Watari, K. Adachi, T. Aokiet al., Nucl. Fusion 22 (1982), 1359.

    Google Scholar 

  194. R. Kumazawa, T. Mutoh, T. Sekiet al., inProc. of 5th Toki Conference, Toki (1993), Vol. 16, p. 21,Development of Folded Wave Guide Antenna for LHD ICRF Heating in Large Helical Device.

  195. T. L. Owens,IEEE Trans. Plasma Sci. ps-14 (6) (1986), 934ORNL.

    Google Scholar 

  196. A. Iiyoshi, M. Fujiwara, O. Motojima, and K. Yamazaki.,Design study of the large helical device. Fusion Technol. 17 (1990), 169–187.

    Google Scholar 

  197. O. Motojima et al., Engineering design study of superconducting Large Helical Device, inPlasma Physics and Controlled Nuclear Fusion Research 1990, Vol. 5 (IAEA, Vienna, 1991), pp. 513–523.

    Google Scholar 

  198. T. Matsukawa, et al., Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system, inProc. 11th Symp. Fusion Engineering, Vol. 1 (IEEE, New York, 1985), pp. 657–660.

    Google Scholar 

  199. M. Huart, Design fabrication and election of flywheel-generatorconvertors for the JET tokamak, inProc. 9th Symp. Engineering Problems of Fusion Research, Vol. 1 (IEEE, New York, 1981), pp. 382–385.

    Google Scholar 

  200. J. G. Murry and G. Bronner, TFTR motor-generator, inProc. 7th Symp. Engineering Problems of Fusion Research, Vol. 1 (IEEE, New York, 1977), pp. 902–906.

    Google Scholar 

  201. H. Salzmann, J. Bundgaard, A. Gadd, C. Gowers, K. B. Hansen, K. Hirsch, P. Nielsen, K. Reed, C. Schrodter and K. Weisberg,Rev. Sci. Instr. 59 (1988), 1451.

    Google Scholar 

  202. D. Johnson, N. Bretx, D. Dimock, B. Grek, D. Long, R. Palladino, and E. Tolanas,Rev. Sci. Instr. 57, (1986), 1856.

    Google Scholar 

  203. H. Rohr, K.-H. Steuer, G. Schrann, K. Hirsch, and H. Salzmann,Nucl. Fusion 22 (1982), 1099.

    Google Scholar 

  204. K. Narihara, Y. Hamada, K. Kawahata, and K. N. Sato, 4th International Symposium on Laser-Aided Plasma Diagnostic, Fukuoka, (1989), p. 285.

  205. T. N. Carlstrom, G. L. Campbell, L. C. Deboo, R. Evanko, J. Evance, C. M. Greenfield, J. Haskovec, C. L. Hsieh, E. MaKee, R. T. Snider, R. Stockdata, P. K. Trost, and M. P. Thomas,Rev. Sci. Instr. 63 (1992), 4901.

    Google Scholar 

  206. H. Hayami and S. Satake, Private communication (1994).

  207. K. Kawahata, Y. Hamada, J. Fujita, and S. Okajima, Proc. 5th Int. Symp. on Laser-Aided Plasma Diagnostics (Bad-Honnef) (1991), p. 92.

  208. T. Tetsuka, S. Okajima, K. Kawahata, and J. Fujita,Jpn. J. Appl. Phys. 24 (1985), L583.

    Google Scholar 

  209. S. Okajima, K. Kawahata, Y. Naitou, A. Ejiri, Y. Hamada, and J. Fujita,Proc. 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena (The Int. Society for Optical Engineering, Bellingham, 1992), p. 366.

    Google Scholar 

  210. S. Sudo,J. Plasma Fusion Res. 69 (1993), 1349.

    Google Scholar 

  211. T. Kato, K. Masai, and M. Arnaud, National Institute for Fusion Science Research Report NIFS-DATA-14 (1991); M. Arnaud and R. Rothenflug, Astron. Astrophys. Suppl. Ser. 60 (1985), p. 425.

  212. F. C. Jobes and R. L. Hickok, A direct measurements of plasma space potential.Nucl. Fusion,10 (1970), 195–197.

    Google Scholar 

  213. P. M. Schoch, J. C. Forster, W. C. Jennings, and R. L. Hickok, TEXT heavy ion beam probe system.Rev. Sci. Intr. 57, (1986), 1825–1827.

    Google Scholar 

  214. R. L. Hickok and P. M. Schoch, Proposed 2MeV beam probe system for TEXT-upgrade.Rev. Sci. Intr. 59 (1988), 1685–1987.

    Google Scholar 

  215. A. Carnevali, K. A. Connor, S. C. Aceto et al., Heavy ion beam probe for the advanced toroidal facility.Rev. Sci. Instr. 59 (1988), 1670–1672.

    Google Scholar 

  216. A. Carnevali, J. R. Misium, J. F. Lewis, and K. A. Connor, Heavy ion beam probe diagnostic system for stellarators.Rev. Sci. Instr. 57 (1986), 1822–1824.

    Google Scholar 

  217. A. Fujisawa, H. Iguchi, M. Sasao, Y. Hamada, and J. Fujita, Active control of beam trajectories for heavy ion beam probe on helical magnetic configurations.Rev. Sci. Instr. 63 (1992), 3694–3700.

    Google Scholar 

  218. M. Sasao, Y. Okabe, A. Fujisawa, J. Fujita, H. Yamaoka, and M. Wada, Development of negative heavy ion beam sources for plasma potential measurements.Rev. Sci. Instr. 63 (1992), 2726–2728.

    Google Scholar 

  219. W. Lotz, Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions.Astrophys. J. 14 (Suppl.) (1967), 207–238.

    Google Scholar 

  220. H. J. Leisenfelder, R. L. Hickok, J. H. Resnick, T. P. Crowley, and J. G. Schatz, Electrostatic energy analyzer for multi-MeV heavy ion beam probes.Rev. Sci. Instr. 63 (1992), 4579–4581.

    Google Scholar 

  221. K. Yamazaki and T. Amano,Nucl. Fusion 32 (1992), 633.

    Google Scholar 

  222. K. Watanabe, N. Nakajima, Y. Nakamura, M. Okamoto, and M. Wakatani,Nucl. Fusion 32 (1992), 1499.

    Google Scholar 

  223. Ogawa, T. Amano, N. Nakjima et al.,Nucl. Fusion 32 (1992), 119.

    Google Scholar 

  224. H. Maassberg, R. Brakel, R. Burhennet al., Controlled Fusion and Plasma Physics, Proc. 20th Eur. Conf. Lisboa (1993).

  225. O. Motojima et al.,Nucl. Fusion 25 (1985), 1783.

    Google Scholar 

  226. S. Okamura et al.,Nucl. Fusion 35, (1995), 283.

    Google Scholar 

  227. K. Uo et al.,Plasma Physics and Controlled Nuclear Fusion Research 1992, Proc. 14th Int. Conf. Kyoto (1986), Vol. 2, IAEA, Vienna (1987), p. 355.

    Google Scholar 

  228. H. Yamada et al.,Plasma Physics and Controlled Nuclear Fusion Research 1992, Proc. 14th Int. Conf. Würtburg (1992), Vol. 2, IAEA, Vienna (1993), p. 461.

    Google Scholar 

  229. K. Ichiguchi et al.,Nucl. Fusion 33 (1993), 481.

    Google Scholar 

  230. H. Yamada et al.,Nucl. Fusion 32 (1992), 25.

    Google Scholar 

  231. S. P. Hirshman, W. I. van Rij, and P. Merkel,Comp. Phys. Commun. 43 (1986), 143.

    Google Scholar 

  232. J. Todoroki,J. Phys. Soc. Jpn. 58 (1989), 3979.

    Google Scholar 

  233. S. Sudo et al.,Nucl. Fusion 30 (1990), 11.

    Google Scholar 

  234. O. Kaneko et al.,Plasma Physics and Controlled Nuclear Fusion Research 1990, Proc. 13th Int. Conf. Washington, D.C. (1990), Vol. 2, IAEA, Vienna (1991), p. 473.

    Google Scholar 

  235. N. Ohyabu et al.,Nucl. Fusion 34 (1994), 387.

    Google Scholar 

  236. N. Ohyabu et al., Plasma Physics and Controlled Nuclear Fusion Research 1992, Proc. 14th Int. Conf. Wurzburg (1992), Vol. 2, IAEA, Vienna (1993), p. 605.

    Google Scholar 

  237. N. Ohyabu, T. Watanabe, Hantao Ji, H. Akao, T. Ono et al.,Nucl. Fusion 34 (1994), 387.

    Google Scholar 

  238. N. Ohyabu,J. Plasma Fusion Res. 69 (1993), 1170.

    Google Scholar 

  239. H. Takase and N. Ohyabu, Guidance of the divertor channel outside the main coil system for heliotron/torsatron devices.Nucl. Fusion 35 (1994), 123.

    Google Scholar 

  240. N. Ohyabu, A. Komori, K. Akaishi, N. Inoue, Y. Kubota et al., Innovative divetor concept for LHD.J. Nucl. Mater. 220–222 (1995), 298.

    Google Scholar 

  241. M. Ali Mahdavi, J. C. DeBoo, C. L. Hsieh, N. Ohyabu, R. D. Stambaugh, and J. C. Wesley,Phys. Rev. Lett. 47 (1981), 1602.

    Google Scholar 

  242. N. Ohyabu,Nucl. Fusion 21 (1981), 519.

    Google Scholar 

  243. A. Sagara, H. Suzuki, N. Ohyabu, and O. Motojima, Design of carbon sheet pump for LHD and demonstration of hydrogen pumping.J. Nucl. Mater. 220–222 (1995), 627.

    Google Scholar 

  244. A. I. Livshits et al.,J. Nucl. Mater. 170 (1990), 79, 178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, M., Yamazaki, K., Okamoto, M. et al. Large Helical Device (LHD) program. J Fusion Energ 15, 7–153 (1996). https://doi.org/10.1007/BF02266926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02266926

Keywords

Navigation