Skip to main content
Log in

Effects of Phonons and Nuclear Spins on the Tunneling of a Domain Wall

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We consider the quantum dynamics of a magnetic domain wall at low temperatures, where dissipative couplings to magnons and electrons are very small. The wall motion is then determined by its coupling to phonons and nuclear spins, and any pinning potentials. In the absence of nuclear spins there is a dominant superOhmic l-phonon coupling to the wall velocity, plus a strongly T-dependent Ohmic coupling to pairs of phonons. There is also a T-independent Ohmic coupling between single phonons and the wall chirality, which suppresses “chirality tunneling”. We calculate the effect of these couplings on the T-dependent tunneling rate of a wall out of a pinning potential. Nuclear spins have a very strong and hitherto unsuspected influence on domain wall dynamics, coming from a hyperfine-mediated coupling to the domain wall position. For kBT »ω0 this coupling yields a spatially random potential, fluctuating at a rate governed by the nuclear T2. When kBT «ω0, the hyperfine potential fluctuates around a linear binding potential. The wall dynamics is influenced by the fluctuations of this potential, ie., by the nuclear spin dynamics. Wall tunneling can occur when fluctuations open an occasional “tunneling window”. This changes the crossover to tunneling and also causes a slow “wandering”, in time, of the energy levels associated with domain wall motion inside the pinning potential. This effect is fairly weak in Ni- and Fe-based magnets, and we give an approximate treatment of its effect on the tunneling dynamics, as well as a discussion of the relationship to recent domain wall tunneling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See the April 1995 issue of Physics Today, devoted to the subject of nanomagnetism.

  2. See the review of D. Gatteschi et al., Science 265, 1054 (1994), of recent progress in making magnetic macromolecules.

    Google Scholar 

  3. P. C. E. Stamp, E. M. Chudnovsky, and B. Barbara, Int. J. Mod. Phys. B 6, 1355 (1992).

    Google Scholar 

  4. A fairly recent collection of articles on many aspects of tunneling in magnetic systems is in Quantum Tunneling of Magnetisation-QTM'94, L. Gunther and B. Barbara (eds.), Kluwer Publishing, Dordrecht (1995).

  5. P. C. E. Stamp, Phys. Rev. Lett 66, 2802 (1991).

    Google Scholar 

  6. N. Giordano and J. D. Monnier, Physica B 194-;196, 1009 (1994); K. Hong and N. Giordano, pp. 257-;272 in Ref. 4; K. Hong and N. Giordano, Phys. Rev. B 51,9855 (1995).

    Google Scholar 

  7. K. Hong and N. Giordano, J. Magn. Magn. Mat. 151, 396 (1995); K. Hong and N. Giordano, J. Phys. CM 8, L301 (1996).

    Google Scholar 

  8. K. Hong and N. Giordano, Europhys. Lett 36, 147 (1996).

    Google Scholar 

  9. K. Hong, Ph.D. Thesis, Purdue University (1995).

  10. M. Uehara and B. Barbara, J. Physique 47, 235 (1986); M. Uehara, B. Barbara, B. Dieny, and P. C. E. Stamp, Phys. Lett. A 114, 23 (1986); B. Barbara, P. C. E. Stamp, and M. Uehara, J. Physique 49, C8-;529 (1988).

    Google Scholar 

  11. C. Paulsen et al., Phys. Lett 161, 319 (1991); Paulsen et al., Europhys. Lett. 17, 643 (1992).

    Google Scholar 

  12. X. X. Zhang et al., Phys. Lett. A 163, 130 (1992); Ll. Balcells et al., Z. Phys. B 89, 209 (1992).

    Google Scholar 

  13. A. O. Caldeira and A. J. Leggett, (N.Y.) Ann. Phys. 149, 374 (1984).

    Google Scholar 

  14. R. F. Voss and R. A. Webb, Phys. Rev. Lett. 47, 265 (1981).

    Google Scholar 

  15. S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris, Phys. Rev. Lett. 54, 2712 (1985).

    Google Scholar 

  16. A. N. Cleland, M. H. Devoret, and J. Clarke, Phys. Rev. B 36, 58 (1987).

    Google Scholar 

  17. D. B. Schwartz, B. Sen, C. N. Archie, and J. E. Lukens, Phys. Rev. Lett. 55, 1547 (1985).

    Google Scholar 

  18. J. Clarke, A. N. Cleland, M. H. Devoret, D. Esteve, and J. M. Martinis, Science 239, 992 (1988).

    Google Scholar 

  19. R. Rouse, S. Han, and J. E. Lukens, Phys. Rev. Lett. 75, 1614 (1995); S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 76, 3404 (1996).

    Google Scholar 

  20. See, C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Phil. Trans. Roy. Soc. A 311, 433 (1983), and refs. therein.

    Google Scholar 

  21. See, H. J. Maris, J. Low Temp. Phys. 98, 403 (1995); S. Balibar et al., J. Low Temp. Phys. 101, 271 (1995); H. J. Maris, Czech. J. Phys. 46, S6, 2943 (1996).

    Google Scholar 

  22. D. Bailin and A. Love, J. Phys. A 13, L271 (1980).

    Google Scholar 

  23. For tunneling in superconducting wires, see J.-M. Duan, Phys. Rev. Lett. 74, 5128 (1995), and references therein.

  24. C. A. R. Sa de Melo, Phys. Rev. B 54, 5829 (1996).

    Google Scholar 

  25. J. Bardeen, Phys. Rev. Lett. 45, 1978 (1980).

    Google Scholar 

  26. A. F. Andreev and I. M. Lifshitz, J.E.T.P. 29, 1107 (1969); B. V. Petukhov and V. L. Pokrovskii, J.E.T.P. 36, 336 (1973).

    Google Scholar 

  27. N. V. Prokof'ev and Y. Kagan, Chapter 2, in Quantum Tunneling in Condensed Matter, Y. Kagan and A. J. Leggett (eds.), Elsevier B. V. (1992).

  28. N. V. Prokof'ev, Int. J. Mod. Phys. B 7, 3327 (1993), and references therein.

    Google Scholar 

  29. N. V. Prokof'ev, Phys. Rev. Lett. 74, 2748 (1995).

    Google Scholar 

  30. I. M. Lifshitz and Yu. M. Kagan, J.E.T.P. 35, 206 (1972); S. V. Iordanskii and A. M. Finkelstein, J.E.T.P. 35, 215 (1972).

    Google Scholar 

  31. M. B. Voloshin, I. Y. Kobzarev, and L. B. Okun, Sov. J. Nucl. Phys. 20, 644 (1975); S. Coleman, Phys. Rev. D 15, 2929 (1977); C. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).

    Google Scholar 

  32. A. J. Leggett, Phys. Rev. B 30, 1208, (1984).

    Google Scholar 

  33. A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

    Google Scholar 

  34. A. J. Leggett, Frontiers and Borderlines in Many-Particle Physics, R. A. Broglia and J. R. Schrieffer (eds.), North-Holland, Amsterdam (1988), pp. 276-;329.

    Google Scholar 

  35. L. Weil, J. Phys. Chem. 51, 715 (1954).

    Google Scholar 

  36. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 1205 (1959).

    Google Scholar 

  37. J. L. Van Hemmen and S. Suto, Europhys. Lett. 1, 481 (1986).

    Google Scholar 

  38. J. L. Van Hemmen and S. Suto, Physica B 141, 37 (1986).

    Google Scholar 

  39. G. Scharf, W. F. Wreszinski, and J. L. Van Hemmen, J. Phys. 20, 4309 (1987).

    Google Scholar 

  40. M. Enz and R. Schilling, J. Phys. C 19, L711 (1986); ibid., 1765 (1986).

    Google Scholar 

  41. D. Loss, D. DiVincenzo, and G. Grinstein, Phys. Rev. Lett. 69, 3233 (1992).

    Google Scholar 

  42. J. von Delft and C. Henley, Phys. Rev. Lett. 69, 3237 (1992); Phys. Rev. B 48, 965 (1993).

    Google Scholar 

  43. N. V. Prokof'ev and P. C. E. Stamp, J. Phys. CM 5, L663 (1993).

    Google Scholar 

  44. P. C. E. Stamp, Physica B 197, 133 (1994).

    Google Scholar 

  45. N. V. Prokof'ev and P. C. E. Stamp, in Quantum Tunneling of Magnetisation-QTM'94, L. Gunther and B. Barbara (eds.), Kluwer Publishing, Dordrecht (1995), pp. 347-;371.

    Google Scholar 

  46. N. V. Prokof'ev and P. C. E. Stamp, J. Low Temp. Phys. 104, 143 (1996).

    Google Scholar 

  47. N. V. Prokof'ev and P. C. E. Stamp, UBC preprint (April 1995), /cond-mat 9511011.

  48. N. Abarenkova and J. C. Angles d'Auriac, Phys. Lett. A 219, 335 (1996).

    Google Scholar 

  49. A. Garg and M. Kim, Phys. Rev. B 43, 712 (1991).

    Google Scholar 

  50. P. Politi et al., Phys. Rev. Lett. 75, 537 (1995); P. Politi et al., Int. J. Mod. Phys. B 10, 2577 (1996).

    Google Scholar 

  51. For multi-grain experiments giving some evidence for tunneling, see, e.g., F. Coppinger et al., Phys. Rev. Lett. 75, 3513 (1995); J. Tejada and X. X. Zhang, J. Magn. Magn. Mat. 140-;144, 1815 (1995); B. Barbara et al., J. Magn. Magn. Mat. 140-;144, 1825 (1995); and references therein. One should also note the single grain experiments of W. Wernsdorfer et al. (May 1997 preprint; see also W. Wernsdorfer et al., Phys. Rev. Lett. 78, 1791 (1997)), which also see evidence for tunneling below 0.4 K in BaFe10.4Co0.8Ti0.8O19 insulating nanoparticles.

    Google Scholar 

  52. For Multi-wall experiments giving some evidence for domain wall tunneling, see Refs. 10-;12, and also W. Wernsdorfer et al., Phys. Rev. B 53, 3341 (1996); ibid. 55, 11552 (1997); or X. X. Zhang et al., J. Phys. CM 4, L163 (1992); Phys Rev. B 53, 3336 (1996).

  53. D. D. Awschalom, J. F. Smith, G. Grinstein, D. P. DiVincenzo, and D. Loss, Phys. Rev. Lett. 68, 3092 (1992); D. D. Awschalom et al., Science 258, 414 (1992); S. Gider and D. D. Awschalom, pp. 243-;255 in Ref. 4 above; S. Gider et al., Science 268, 77 (1995).

    Google Scholar 

  54. Some of the recent Mn12-acetate experiments include: C. Paulsen and J. G. Park, in Ref. 3, pp. 189–207 (1995); M. Novak and R. Sessoli, in Ref. 3, pp. 171-;188 (1995); B. Barbara et al., J. Magn. Magn. Matt., 140-;144, 1825 (1995); J. R. Friedman et al., Phys. Rev. Lett., 76, 3830 (1996); L. Thomas et al., Nature 383, 145 (1996). J. M. Hernandez et al., Europhys. Lett., 35, 301 (1996). See also the recent preprint by C. Sangregorio et al. (1997), which describes similar resonant tunneling in an Fe8 molecular crystal.

  55. For early work on solitons coupled to gapless phonons, see M. Ogata and Y. Wada, Prog. Rep. Theor. Phys. Suppl. 94, 115 (1988); T. Ono et al., J. Phys. Soc. Jpn. 55, 1656 (1986); and also Wada and Schrieffer.59 A more recent paper is, e.g., A. H. Castro Neto and A. O. Caldeira, Phys. Rev. E 48, 4037 (1993).

  56. B. Leduc, MSc. Thesis, University of British-Columbia (1995); to be published.

  57. G. Tatara and H. Fukuyama, J. Phys. Soc. Jpn. 63, 2538 (1994); G. Tatara and H. Fukuyama, Phys. Rev. Lett. 72, 772 (1994).

    Google Scholar 

  58. A. Wada and J. R. Schrieffer, Phys. Rev. B 18, 3897 (1978).

    Google Scholar 

  59. H-B. Braun and D. Loss, J. Appl. Phys. 76, 6177 (1994).

    Google Scholar 

  60. G. Takagi and G. Tatara, Phys. Rev. B 54, 9920 (1996).

    Google Scholar 

  61. H.-B. Braun and D. Loss, Phys. Rev. B 53, 3237 (1996).

    Google Scholar 

  62. A. P. Malozemoff and J. C. Slonezewski, Magnetic Domain Walls in Bubble Materials, Academic Press, New York (1979).

    Google Scholar 

  63. L. D. Landau and E. M. Liftshitz, Electrodynamics of Continuous Media, Pergamon, London (1975).

    Google Scholar 

  64. M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1987).

    Google Scholar 

  65. Geometric Phases in Physics, A. Shapere and F. Wilczek (eds.), World Scientific, Singapore (1989).

    Google Scholar 

  66. A. Auerbach, Interacting Electrons and Quantum Magnetism, Springer-Verlag, New York (1994).

    Google Scholar 

  67. T. H. O'Dell, Ferromagnetodynamics, MacMillan Press, London (1981).

    Google Scholar 

  68. E. M. Chudnovsky, O. Iglesias, and P. C. E. Stamp, Phys. Rev. B 46, 5392 (1992).

    Google Scholar 

  69. L. Néel, Compt. Rend. Acad. Sci. Paris 241, 533 (1955).

    Google Scholar 

  70. A. Aharoni, J. Magn. Magn. Mat. 140-;144, 1819 (1995).

    Google Scholar 

  71. R. P. Feynman and F. L. Vernon, Jr., (N.Y.) Ann. Phys. 24, 118 (1963).

    Google Scholar 

  72. G. D. Mahan, Many-Particle Physics, Plenum Press, New York (1993).

    Google Scholar 

  73. U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore (1993).

    Google Scholar 

  74. P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    Google Scholar 

  75. For the “Landau-Zener” model of the environment (which apparently goes back to the paper of D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953)). see, the recent papers of A. Bulgac, G. Do Dang, and D. Kusnezov, Phys. Rev. E 54, 3468 (1996); Ann. Phys. 242, 1 (1995); E. Shimshoni and Y. Gefen, Ann. Phys. 210, 16 (1991); and the many references therein.

    Google Scholar 

  76. H. Grabert, P. Olschowski, and U. Weiss, Phys. Rev. B 36, 1931 (1986).

    Google Scholar 

  77. L. D. Landau and E. M. Liftshitz, Theory of Elasticity, Pergamon, London (1975).

    Google Scholar 

  78. E. du Trémolet de Lacheisserie, Magnetostriction: Theory and Applications of Magnetoelasticity, CRC Press, Boca Raton (1993).

    Google Scholar 

  79. J. P. Mason, Phys. Rev. 82, 715 (1951).

    Google Scholar 

  80. Y. Kagan and N. V. Prokof'ev, Sov. Phys. J.E.T.P. 69, 1250 (1989).

    Google Scholar 

  81. L. Néel, J. Physiq. Radium 15, 225 (1954).

    Google Scholar 

  82. E. Callen and H. B. Callen, Phys. Rev. A 139, 455 (1965).

    Google Scholar 

  83. D. E. Eastman, Phys. Rev. 148, 530 (1966).

    Google Scholar 

  84. A. E. Clark and R. E. Stanley, J. Appl. Phys. 32 1172.

  85. E. du Trémolet de Lacheisserie and J. Rouchy, J. Magn. Magn. Mat. 28, 77 (1982).

    Google Scholar 

  86. R. C. O'Handley and S. W. Sun, J. Magn. Magn. Mat. 104-;107, 1717 (1992).

    Google Scholar 

  87. A. M. Stoneham, Defects in Solids, Clarendon Press, Oxford (1975).

    Google Scholar 

  88. J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, (N.Y.) Ann. Phys. 201, 285 (1990).

    Google Scholar 

  89. T. A. Fulton and L. N. Dunkleberger, Phys. Rev. B 9, 4760 (1974).

    Google Scholar 

  90. W. Wernsdorfer, B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J.-Ph. Ansermet, and B. Barbara, Phys. Rev. Lett. 77, 1873 (1996).

    Google Scholar 

  91. W. Wernsdorfer, K. Hasselbach, A. Benoit, B. Barbara, B. Doudin, J. Meier, J.-Ph. Ansermet, and D. Mailly, Phys. Rev. B 55, 11552 (1997).

    Google Scholar 

  92. E. M. Chudnovsky and L. Gunther, Phys. Rev. B 37, 9455 (1988).

    Google Scholar 

  93. H.-B. Braun, J. Kyriakidis, and D. Loss, cond-mat/9710064.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubé, M., Stamp, P.C.E. Effects of Phonons and Nuclear Spins on the Tunneling of a Domain Wall. Journal of Low Temperature Physics 110, 779–840 (1998). https://doi.org/10.1023/A:1022676810365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022676810365

Keywords

Navigation