Skip to main content
Log in

Theoretical investigation of the transition temperature of dirty proximity-effect sandwich systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The influence of impurities and of an interface barrier on the critical temperature of a superconductor-normal (SN) metal sandwich is studied in the Cooper limit. The investigations are based on new equations which allow us to deal with inhomogeneous, dirty superconducting systems near the critical temperature. In contrast with previous treatments, it is shown that at finite film thicknesses,T c is not only dependent on the N to S thickness ratio, but also on the absolute thickness values, the transmission probability of the interface barrier, and the mean free electron paths. Our results permit the determination of the stay probabilities of McMillan 's tunneling model and the effective length of de Gennes' extended boundary condition on the integral kernel which determinesT c. Finally, it is shown how the conventional Cooper limit result forT c by de Gennes is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinsky,Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, New Jersey, 1963), Chapter 7.

    Google Scholar 

  2. G. Deutscher and P. G. de Gennes, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Chapter 17.

    Google Scholar 

  3. P. G. de Gennes,Rev. Med. Phys. 36, 225 (1964).

    Google Scholar 

  4. G. Deutscher, O. Entin-Wohlman, and Z. Ovadyahy,Phys. Rev. B 14, 1002 (1976).

    Google Scholar 

  5. O. Entin-Wohlman,J. Low Temp. Phys. 27, 777 (1977).

    Google Scholar 

  6. O. Entin-Wohlman and S. Alexander,J. Low Temp. Phys. 24, 229 (1976).

    Google Scholar 

  7. G. Minnigerode,Z. Physik 192, 379 (1966).

    Google Scholar 

  8. W. Silvert and L. N. Cooper,Phys. Rev. 141, 336 (1966).

    Google Scholar 

  9. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  10. A. E. Jacobs and D. M. Ginsberg,Phys. Rev. 175, 569 (1968).

    Google Scholar 

  11. R. O. Zaitsev,Zh. Eksp. Teor. Fiz. 50, 1055 (1966) [Sov. Phys.—JETP 23, 702 (1966)].

    Google Scholar 

  12. J. A. Blackburn, B. B. Schwartz, and A. Baratoff,J. Low. Temp. Phys. 20, 523 (1975).

    Google Scholar 

  13. N. R. Werthamer,Phys. Rev. 132, 2440 (1963).

    Google Scholar 

  14. M. Abramowitz and I. A. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1965), Chapter 6.

    Google Scholar 

  15. C. J. Adkins and B. W. Kington,Phys. Rev. 177, 777 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberkorn, W., Richter, J. Theoretical investigation of the transition temperature of dirty proximity-effect sandwich systems. J Low Temp Phys 35, 627–639 (1979). https://doi.org/10.1007/BF00117900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117900

Keywords

Navigation