Skip to main content
Log in

Nonadiabatic superconductivity: Electron phonon interaction beyond Migdal's Theorem

  • Electron Phonon Physics
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A common characteristic of all the high Tc materials, oxides and Fullerene compounds, is that the Fermi energy is much smaller than in usual metals and it is of the order of the Debye phonon frequencies. This requires a generalization of the usual BCS-Eliashberg scheme to include non adiabatic effects beyond Migdal's Theorem. We have developed the first steps of this generalization and here we discuss the main results, the possible lines of development and the main open problems. The key point is that the first order non adiabatic effects (vertex corrections and similar processes) depend crucially on the momentum (q) of the exchanged phonons. If small q scattering is predominant, one obtains a strong enhancement of Tc and various other effecs also for the normal state that should lead to precise experimental predictions. The predominance of small q scattering can be naturally obtained from electronic correlations but it could arise also from different properties like peaks in the density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz and K.A. Muller,Z. Phys. B 64, 189 (1986)

    Google Scholar 

  2. R.D. Parks Ed. “Superconductivity”, Dekker, New York (1969)

    Google Scholar 

  3. A.B. Migdal,Sov. Phys. JETP 34, 996 (1958)

    Google Scholar 

  4. G.M. Eliashberg,Sov. Phys. JETP 11, 696 (1960); D.J. Scalapino, in Ref (2), Vol. 1, p.449; P.B. Allen and B. Mitrovic, in Solid State Physics Vol.37, p.1 (1982);

    Google Scholar 

  5. W.E. Pickett, private comm.

  6. W.E. Pickett in Solid State Physics Ed by H. Ehrenreich and F. Spaepan, Academic Press, in print; O.K. Andersen et al. Physica C185-189, 147 (1991); P. Fulde, Physica C153–155, 1769 (1988); P.W. Anderson and J.R. Schrieffer, Physics Today June 1991, p. 54

  7. C. Taliani et al Eds. “Fullerenes: status and perspectives”, World Sci. Singapore (1992)

    Google Scholar 

  8. L. Pietronero,Europhys. Lett. 17, 365 (1992)

    Google Scholar 

  9. C. Varma, J. Zaanen and K. Raghavachari,Science 254, 989 (1991); M. Schluter, M. Lanoo, M. Needels, G.A. Baraff and D. Tomanek,Phys. Rev. Lett. 68, 526 (1992)

    Google Scholar 

  10. Y.J. Uemura et al,Phys. Rev. Lett. 66, 2665 (1992); N. D'Ambrumenil,Nature 352, 472 (1992)

    Google Scholar 

  11. D. Zech, H. Keller, K. Conder, E. Kaldis, E. Liarokapls, N. Poulakis and K.A. Muller,Nature 371, 681 (1994)

    Google Scholar 

  12. F. Guinea et al Eds., Proc. of San Sebastian Conf. on “The Physics and the Mathematical Physics of the Hubbard Model”, Oct. 1993, in print

  13. D. Vollhardt,Rev. Mod. Phys. 56, 99 (1984); C. Castellani et al,Phys. Rev. Lett. 69, 2009 (1992); M.J. Rozenberg, X.Y. Zhang and G. Kotliar,Phys. Rev. Lett. 69, 1236 (1992)

    Google Scholar 

  14. L. Pietronero and S. Strassler,Europhys. Lett. 18, 627 (1992)

    Google Scholar 

  15. R. Micnas, J. Ranninger and S. Robaskiewicz,Rev. Mod. Phys. 62, 113 (1990); A.S. Alexandrov and N.F. Mott,Supercond. Sci. Technol. 6, 215 (1993)

    Google Scholar 

  16. M. De Seta and F. Evangelisti,Phys. Rev. Lett. 71, 2477 (1994)

    Google Scholar 

  17. D. van der Marel and G. Rietveld,Phys. Rev. Lett. 69, 2575 (1992); G.Rietveld, N.Y. Chen and D. van der Marel,Phys. Rev. Lett. 69, 2578 (1992)

    Google Scholar 

  18. L. Pietronero, C. Grimaldi and S. Strassler,Phys. Rev. B, in print.

  19. C. Grimaldi, L. Pietronero and S. Strassler,Phys. Rev. B, in print.

  20. M. Grabowsky and L.J. Sham,Phys. Rev. B 29, 6132 (1984)

    Google Scholar 

  21. E. Cappelluti and L. Pietronero, preprint.

  22. A.A. Abrikosov,Physica C 222, 191 (1994)

    Google Scholar 

  23. M.L. Kulic and R. Zeyer,Phys. Rev. B 49, 4395 (1994);Physica B 199–200, 358 (1994)

    Google Scholar 

  24. M. Grilli and C. Castellani,Phys. Rev. B, in print.

  25. K.J. von Szczepanski and K.W. Becker,Z. Phys. B 89, 327 (1992)

    Google Scholar 

  26. R. Combescot and Varelogiannis,Europhys. Lett. 17, 635 (1992)

    Google Scholar 

  27. P. Benedetti, C. Grimaldi, L. Pietronero and G. Varelogiannis,Europhys. Lett., in print.

  28. O. Gunnarson, preprint

  29. D. Rainer, preprint

  30. O. Gunnarson and G. Zwicknagl,Phys. Rev. Lett. 69, 957 (&992)

  31. S. Ciuchi, F. De Pasquale, C. Masciovecchio and D. Feinberg,Europhys. Lett. 24, 575 (1993); J.K. Freericks, M. Jarrell and D.J. Scalapino,Europhys. Lett. 25, 37 (1994);

    Google Scholar 

  32. A. Auerbach, N. Mainini and E. Tosatti,Phys. Rev. B 49, 12998 (1994);ibid. B 49, 13008 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietronero, L., Benedetti, P., Cappelluti, E. et al. Nonadiabatic superconductivity: Electron phonon interaction beyond Migdal's Theorem. J Low Temp Phys 99, 535–543 (1995). https://doi.org/10.1007/BF00752336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752336

Keywords

Navigation