Skip to main content
Log in

Calculation of ultrasonic surface waves from an extended thermoelastic laser source

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A method is developed to calculate ultrasonic surface waveforms generated by an extended laser source, operating in the thermoelastic regime of laser-pulse energy density. This approach integrates over a suitably weighted distribution of point surface centers of expansion, for observation to within 1 mm of the edge of the source. Power spectra as well as both horizontal and vertical displacements are presented and discussed for ultrasonic waveforms on an aluminium surface, for incident laser pulses having Gaussian lateral profiles of various sizes. Far from the source, the waveform is dominated by a dipolar Rayleigh (R) wave, whose amplitude and spectral content depend on laser spot size. Weak, monopolar pulses also occur at the intersection of bulk pressure and shear wavefronts with the surface (denoted assP andsS, respectively). Close to the source, thesP wave amplitude approaches that for theR wave, and overlaps theR wave for large source sizes. The fall-off with distance for bothsP andR waves is given. Finally, the changes in pulse shape and amplitude are calculated when anR wave from an extended thermoelastic source is reflected or transmitted by a right-angled corner of an aluminium block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. White,J. Appl. Phys. 34:3559–3567 (1963).

    Google Scholar 

  2. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, inResearch Techniques in Nondestructive Testing, R. S. Sharpe, ed. (Academic Press, 1982), Vol. 5, Chap. 8.

  3. L. R. F. Rose,J. Acoust. Soc. Am. 75:723–732 (1984).

    Google Scholar 

  4. A. N. Ceranoglu and Y-H Pao,J. Appl. Mech. 48:125–147 (1981).

    Google Scholar 

  5. H. N. G. Wadley, C. K. Stockton, J. A. Simmons, M. Rosen, S. D. Ridder, and R. Mehrabian, inReview of Progress in Quantitative NDE D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1982), Vol. 1, pp. 421–431.

    Google Scholar 

  6. N. N. Hsu,Dynamic Green's Functions of an Infinite Plate — A Computer Program, U.S. National Bureau of Standards Report NBSIR 85-3234, 1985.

  7. T. M. Proctor, F. R. Breckenridge, and Y-H. Pao,J. Acoust. Soc. Am. 74:1905–1907 (1983).

    Google Scholar 

  8. H. N. G. Wadley, J. A. Simmons, and C. Turner, inReview of Progress in Quantitative NDE. D. O. Thompson and C. E. Chimenti, eds. (Plenum Press, New York, 1984), Vol. 3B, pp. 683–697.

    Google Scholar 

  9. D. A. Hutchins,Can J. Phys. 64:1247–1264 (1986).

    Google Scholar 

  10. P. A. Doyle,J. Phys. D: Appl. Phys. 19:1613–1623 (1986).

    Google Scholar 

  11. L. R. F. Rose,Wave Motion 6:359–361 (1984).

    Google Scholar 

  12. K. Aki and P. G. Richards,Quantitative Seismology Theory and Methods (Freeman, San Francisco, 1980), Vol. 1.

    Google Scholar 

  13. J. E. Ready,Effects of High-power Laser Radiation (Academic, New York, 1971).

    Google Scholar 

  14. W. Arnold, B. Betz, and B. Hoffman,Phil. Trans. R. Soc. Lond. A320:315–318 (1986).

    Google Scholar 

  15. C. M. Scala and P. A. Doyle,J. Acoust. Soc. Am. 85:1569–1576 (1989).

    Google Scholar 

  16. J. D. Achenbach, A. K. Gautesen, and H. McMaken,Ray Methods for Waves in Elastic Solids (Pitman, 1982).

  17. C. B. Scruby and B. C. Moss, inRayleigh-wave Theory and Application, E. A. Ash and E. G. S. Paige, eds. (Springer Verlag, Berlin, 1985), pp. 102–109.

    Google Scholar 

  18. E. R. Lapwood,Geophys. J. 4:174–196 (1961).

    Google Scholar 

  19. A. K. Gautesen,J. Appl. Mech. 52:664–668 (1985).

    Google Scholar 

  20. A. K. Gautesen,Wave Motion 8:27–41 (1986).

    Google Scholar 

  21. A. K. Gautesen,Wave Motion 9:51–59 (1987).

    Google Scholar 

  22. J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. W. McKie, and S. B. Palmer,IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control UFFC-33:462–470 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, P.A. Calculation of ultrasonic surface waves from an extended thermoelastic laser source. J Nondestruct Eval 8, 147–164 (1989). https://doi.org/10.1007/BF00570884

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570884

Key words

Navigation