Skip to main content
Log in

An enzyme-distributed system for lidocaine metabolism in the perfused rat liver preparation

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The influence of enzymic distribution on lidocaine metabolism was investigated in the once-through perfused rat liver preparation. Low input concentrations of14C-lidocaine (1–2 μM) and preformed monoethylglycine xylidide (MEGX; 2.3–2.8 μM) were delivered by normal and retrograde flow directions to the liver preparations at 10 ml/min per liver. Upon reversal of normal to retrograde delivery of lidocaine, the rates at which lidocaine, MEGX, and glycine xylidide (GX) left the liver almost doubled, whereas the rates of appearance of (total) hydroxylated lidocaine and MEGX in bile and perfusate increased to lesser extents. Upon reversal of normal to retrograde delivery of preformed MEGX, the rates of appearance of MEGX and GX were virtually unchanged. Computer simulations on lidocaine and preformed MEGX metabolism were performed on both evenly distributed (“parallel tube” model) and enzyme-distributed systems. An even or parallel distribution of N-deethylation and hydroxylation activities for lidocaine metabolism failed to predict the observed increased hepatic availability of lidocaine. Rather, the distribution of a low-affinity, high-capacity N-deethylation system anterior to a high-affinity, lowcapacity hydroxylation system for lidocaine metabolism adequately predicted the increased hepatic availability of lidocaine. Further extension of these consistent enzyme-distributed models on the metabolism of lidocaine metabolites suggests that the N-deethylation and hydroxylation activities for the metabolism of lidocaine, MEGX, 3-hydroxyidocaine, and 3-hydroxy MEGX are not identically distributed. When these enzymedistributed models were appraised with reference to the “parallel tube” and “wellstirred” models of hepatic drug clearance, predictions from these.enzymedistributed models proved to be superior to the “parallel tube” and “well-stirred” models for the present data on lidocaine metabolites with normal and retrograde perfusions. Previously published data on lidocaine and MEGX metabolism after inputting 4 μg/ml (17 μM) lidocaine at flow rates of 10, 12, 14, and 16 ml/min were reexamined with respect to the adequacy of these enzyme-distributed models. They were found to be superior to the evenly-distributed or “parallel tube” model in predicting hepatic availability of lidocaine and the rate of appearance of MEGX. However, the enzyme-distributed systems were not as consistent as the “well-stirred” model in predicting lidocaine hepatic availability in these flow experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Boyes, D. B. Scott, P. J. Jebson, M. J. Goodman, and D. G. Julian. Pharmacokinetics of lidocaine in man.Clin. Pharmacol. Ther. 12:105–114 (1970).

    Google Scholar 

  2. E. S. Munson, R. W. Martucci, and I. H. Wagman. Bupivacaine and lignocaine induced seizures in Rhesus monkeys.J. Anesth. 44:1025–1028 (1972).

    CAS  Google Scholar 

  3. M. A. Nevins. Re-evaluating the use of lidocaine. Toxic and metabolic effects, sinus node depression and paradoxical cardiac influences are potential hazards and limitations.Geriatrics 28:48–51 (1973).

    CAS  PubMed  Google Scholar 

  4. H. J. Pfeifer, D. J. Greenblatt, and J. Koch-Weser. Clinical use and toxicity of intravenous lidocaine. A report from the Boston Collaborative Drug Surveillance Program.Am. Heart J. 92:168–173 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. M. G. Wyman, D. Lalka, L. Hammersmith, D. S. Cannom, and B. N. Goldreyer. Multiple bolus technique for lidocaine administration during the first hours of an acute myocardial infarction.Am. J. Cardiol. 41:313 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. W. W. Stargel, D. G. Shand, P. A. Routledge, A. Barchowsky, and G. S. Wagner. Clinical comparison of rapid infusion and multiple injection methods for lidocaine loading.Am. Heart J. 102:872–876 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. F. G. McMahon and L. A. Woods. Estimation of metabolism of lidocaine (Xylocaine), alpha-dimethylamino-2,6-acetoxylidide.Fed. Proc. 10:321 (1951).

    Google Scholar 

  8. G. D. Breck and W. F. Trager. Oxidative N-dealkylation. A Mannich intermediate in the formation of a new metabolite of lidocaine in man.Science 173:545–546 (1971).

    Article  Google Scholar 

  9. J. Thomson and P. Meffin. Aromatic hydroxylation of lidocaine and mepivacaine in rats and humans.J. Med. Chem. 15:1046–1049 (1972).

    Article  Google Scholar 

  10. J. M. Strong, M. Parker, and A. J. Atkinson, Jr. Identification of glycine xylidide in patients treated with intravenous lidocaine.Clin. Pharmacol. Ther. 14:67–72 (1972).

    Google Scholar 

  11. K. K. Adjepon-Yamoah and L. F. Prescott. Lignocaine metabolism in man.Br. J. Pharmacol. 47:672–673 (1973).

    Google Scholar 

  12. F. G. McMahon and L. A. Woods. Further studies on the metabolism of lidocaine (xylocaine) in the dog.J. Pharmacol Exp. Ther. 103:354 (1951).

    Google Scholar 

  13. I. C. Geddes. The use of C14 to establish the metabolism of lignocaine.Anesthesia 13:200 (1958).

    Article  CAS  Google Scholar 

  14. G. Hollunger. On the metabolism of lidocaine. II. Biotransformation of lidocaine.Acta Pharmacol. Toxicol. 17:365–373 (1960).

    Article  CAS  Google Scholar 

  15. J. B. Keenaghen and R. N. Boyes. The tissue distribution, metabolism, and excretion of lidocaine in rats, guinea pigs, dogs and man.J. Pharmacol. Exp. Ther. 180:459–463 (1972).

    Google Scholar 

  16. C. A. DiFazio and R. E. Brown. Lidocaine metabolism in normal and phenobarbital pretreated dogs.Anesthesiology 36:238–243 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. G. Hollunger. Solubilisation and purification of an amide-hydrolysing microsomal enzyme.Acta Pharmacol. Toxicol. 17:374–383 (1960).

    Article  CAS  Google Scholar 

  18. C. von Bahr, I. Hedlund, B. Karlen, D. Backtrom, and H. Grasdalen. Evidence for two catalytically different binding sites of liver microsomal cytochrome P-450: Importance for species and sex differences in oxidation pattern of lidocaine.Acta Pharmacol. Toxicol. 41:39–48 (1977).

    Article  Google Scholar 

  19. E. S. Munson, R. W. Martucci, and I. H. Wagman. Bupivacaine and lignocaine induced seizures in Rhesus monkeys.J. Anesih. 44:1025–1028 (1972).

    CAS  Google Scholar 

  20. E. S. Smith and B. R. Duce. The acute antiarrhythmic and toxic effects in mice and dogs of 2-ethylamino-2′,6-acetoxylidide (L-86), a metabolite of lidocaine.J. Pharmacol. Exp. Ther. 179:580–585 (1971).

    CAS  PubMed  Google Scholar 

  21. J. Blumer, J. M. Strong, and A. J. Atkinson, Jr. The convulsant potency of lidocaine and its N-dealkylated metabolites.J. Pharmacol Exp. Ther. 186:31–36 (1973).

    CAS  PubMed  Google Scholar 

  22. R. G. Burner, C. A. DiFazio, M. J. Peach, K. A. Petrie, and M. J. Silvester. Antiarrhythmic effects of lidocaine metabolites.Am. Heart. J. 88:765–769 (1974).

    Article  Google Scholar 

  23. J. M. Strong, D. E. Mayfield, A. J. Atkinson, Jr., B. C. Burris, F. Raymon, and L. T. Webster, Jr. Pharmacologic activity, metabolism and pharmacokinetics of glycine-xylidide.Clin. Pharmacol. Ther. 17:184–194 (1974).

    Google Scholar 

  24. J. LeLorier, D. Grenon, Y. Latour, and G. Caille. Pharmacokinetics of lidocaine after prolonged intravenous infusions in uncomplicated myocardiai infarction.Ann. Intern. Med. 87:700–702 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. D. S. Fredrick and R. B. Boersma. Lidocaine infusions: Effect of duration and method of discontinuation of recurrence of arrhythmias and pharmacokinetic variables.Am. J. Hosp. Pharm. 36:778–781 (1979).

    CAS  PubMed  Google Scholar 

  26. J. LeLorier, R. Mosian, J. Gagne, and G. Caille. Effect of duration of infusion on the disposition of lidocaine in dogs.J. Pharmacol. Exp. Ther. 203:507–511 (1977).

    CAS  PubMed  Google Scholar 

  27. N. Vicuna, D. Lalka, S. R. Burrow, A. J. McLean, P. du Souich, and J. L. McNay. Dose-dependent pharmacokinetic behavior of lidocaine in the conscious dog.Res. Commun. Chem. Pathol. Pharmacol. 22:485–491 (1978).

    CAS  PubMed  Google Scholar 

  28. M. S. Lennard, G. T. Tucker, and H. F. Woods. Time-dependent kinetics of lignocaine in the isolated perfused rat liver.J. Pharmacokin. Biopharm. 11:165–182 (1983).

    Article  CAS  Google Scholar 

  29. K. S. Pang and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for the acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5:655–680 (1977).

    Article  CAS  Google Scholar 

  30. T. Suzuki, S. Fujita, and R. Kawai. Precursor-metabolite interaction in the metabolism of lidocaine.J. Pharm. Sci. 73:136–138 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. R. Kawai, J. Tatsuno, S. Fujita, and T. Suzuki. Lidocaine-lidocaine metabolite interactions in their metabolism.J. Pharmacokin. Biodyn. 6:s-79 (1983).

    Google Scholar 

  32. K. S. Pang and M. Rowland. Hepatic clearance of drugs. III. Additional experimental evidence for the acceptance of the “well-stirred” model using metabolite (MEGX) data generated from lidocaine under varying hepatic blood flows in the rat liver perfusedin situ preparation.J. Pharmacokin. Biopharm. 5:681–699 (1977).

    Article  CAS  Google Scholar 

  33. K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats.J. Pharmacol Exp. Ther. 216:339–346 (1981).

    CAS  PubMed  Google Scholar 

  34. P. K. Narang, W. G. Crouthamel, N. H. Carliner, and M. L. Fisher. Lidocaine and its active metabolites.Clin. Pharmacol. Ther. 24:654–662 (1978).

    CAS  PubMed  Google Scholar 

  35. S. D. Nelson, W. A. Garland, G. D. Breck, and W. F. Trager. Quantitation of lidocaine and several metabolites utilizing chemical-ionization mass spectroscopy and stable isotope labelling.J. Pharm. Sci. 66:1180–1190 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. G. Knott and D. Reece.MLAB, An On Line Modeling Laboratory, 7th ed., Division of Computer Research and Technology, National Institutes of Health, Bethesda, Maryland, 1977.

    Google Scholar 

  37. K. S. Pang, H. Koster, I. C. M. Halsema, E. Scholtens, G. J. Mulder, and R. N. Stillwell. Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation.J. Pharmacol. Exp. Ther. 224:647–653 (1983).

    CAS  PubMed  Google Scholar 

  38. K. S. Pang and R. N. Stillwell. An understanding of the role of enzyme localization of the liver on metabolite kinetics: A computer simulation.J. Pharmacokin. Biopharm. 11:451–467 (1983).

    Article  CAS  Google Scholar 

  39. J. Baron, J. A. Redick, and F. P. Guengerich. Immunohistochemical localizations of cytochrome P-450 in the rat liver.Life Sci. 23:2627–2632 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. D. G. Shand, D. M. Kornhauser, and G. R. Wilkinson. Effects of route of administration and blood flow on hepatic drug elimination.J. Pharmacol. Exp. Ther. 195:424–432 (1975).

    CAS  PubMed  Google Scholar 

  41. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1973).

    Article  CAS  Google Scholar 

  42. K. Winkler, S. Keiding, and N. Tygstrup. Clearance as a quantitative measure of liver function. In P. Paumgartner and R. Presig (eds.),The Liver: Quantitative Aspects of Structure and Function, Karger, Basel, 1973, pp. 144–155.

    Google Scholar 

  43. K. S. Pang. Hepatic Clearance of Drugs. Ph.D. thesis, University of California at San Francisco, 1976.

  44. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  45. M. S. Roberts and M. Rowland. Communication. Hepatic elimination—Dispersion model.74: 585–587 (1985).

    CAS  Google Scholar 

  46. L. Bass, P. Robinson, and A. J. Bracken. Hepatic elimination of flowing substrates: The distributed model.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  47. B. A. Luxon and E. L. Forker. Hepatic transport kinetics and plasma disappearance curves: Distributed modeling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).

    PubMed  Google Scholar 

  48. E. L. Forker and B. A. Luxon. How to measure first-order hepatic transfer coefficients by distributed modeling of a recirculating rat liver perfusion system.Am. J. Physiol. 243:G518-G531 (1982).

    PubMed  Google Scholar 

  49. Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic clearance model: Comparison among the distributed, parallel-tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by U.S. HHS grant GM-27323 and a Research Career Development Award from the National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases (AM-01028) as well as grants from the Canadian Medical Research Council (development grants DG-262, 263, and 264) (K.S.P.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, K.S., Terrell, J.A., Nelson, S.D. et al. An enzyme-distributed system for lidocaine metabolism in the perfused rat liver preparation. Journal of Pharmacokinetics and Biopharmaceutics 14, 107–130 (1986). https://doi.org/10.1007/BF01065257

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01065257

Key words

Navigation