Skip to main content
Log in

Multicompartment models of cancer chemotherapy incorporating resistant cell populations

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The pharmacokinetics of antineoplastic drugs based on compartmental models are combined with deterministic exponential growth models of tumors containing drug-resistant and sensitive cells. Model predictions for single-drug therapy are compared with in vivodata obtained by other investigators for L1210 t-cell leukemia in mice treated with BCNU and AraC and for in vitrotreatment of L1210 with Ara-C. The model and data compare favorably in terms of rate of tumor growth and duration of drug action for both constant infusion and bolus delivery of the drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Goldie and A. J. Coldman. The genetic origin of drug resistance in neoplasm: Implications for systemic therapy.Cancer Res. 44:3643–3653 (1984).

    CAS  PubMed  Google Scholar 

  2. J. H. Goldie and A. J. Coldman. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate.Cancer Treat. Rep. 63:1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  3. A. J. Coldman and J. H. Goldie. A model for the resistance of tumor cells to cancer chemotherapeutic agents.Math. Biosci. 65:291–307 (1963).

    Article  Google Scholar 

  4. K. Bischoff, R. Dedrick, D. Zaharko, and J. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. R. Dedrick, D. Zaharko, R. Bender, W. Bleyer, and R. Lutz. Pharmacokinetic considerations on resistance to anticancer drugs.Cancer Chemother. Rep. 59:795–804 (1975).

    CAS  PubMed  Google Scholar 

  6. K. Woo, L. Brenkus, and K. Wiig. Analysis of the effects of antitumor drugs on cell cycle kinetics.Cancer Chemother. Rep. 59:847–860 (1975).

    CAS  PubMed  Google Scholar 

  7. C. Finn and W. Sadee. Determiniation of 5-fluoroucil (NSC-19893) plasma levels in rats and man by isotope dilution-mass fragmentography.Cancer Chemother. Rep. 59:279–286 (1975).

    CAS  Google Scholar 

  8. A. Coldman and J. Goldie. A mathematical model of drug resistance in neoplasm In N. Bruchovsky and J. Goldie (eds.),Drug and Hormone Resistance in Neoplasm, Vol. 1, CRC Press, Boca Raton, Florida, 1982.

    Google Scholar 

  9. H. Skipper, F. Schabel, and J. Mellet,et al. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules.Cancer Chemother. Rep. 54:431–450 (1970).

    CAS  PubMed  Google Scholar 

  10. G. Levy. Relationship between pharmacological effects and plasma or tissue concentration of drugs in man. In. D. Davies and B. Prichard (eds.),Biological Effects of Drugs in Relation to Their Plasma Concentrations, MacMillan, London, 1973.

    Google Scholar 

  11. K. Himmelstein and K. Bischoff. Models of ARA-C chemotherapy of L1210 leukemia in mice.J. Pharmacokin. Bipharm. 1:69–81 (1973).

    Article  CAS  Google Scholar 

  12. K. Himmelstein and K. Bischoff. Mathematical representations of cancer chemotherapy effects.J. Pharmacokin. Biopharm. 1:51–68 (1973).

    Article  CAS  Google Scholar 

  13. W. Jusko. A pharmacodynamic model for cell-cycle specific chemotherapeutic agents.J. Pharmacokin. Biopharm. 1:175–201 (1973).

    Article  CAS  Google Scholar 

  14. L. Norton and R. Simon. Tumor size, sensitivity to therapy, and design of treatment schedule.Cancer Treat. Rep. 61:1307–1317 (1977).

    CAS  PubMed  Google Scholar 

  15. H. Skipper. Pharmacological basis of cancer chemotherapy: Closing remarks. InPharmacological Basis of Cancer Chemotherapy, Symposium on Fundamental Cancer Research, University of Texas, 1974, pp. 713–726.

  16. B. Hill. Cancer chemotheraphy. The relevance of certain concepts of cell cycle kinetics.Biochim. Biophys. Acta. 516:389–417 (1978).

    CAS  PubMed  Google Scholar 

  17. R. Tallarida and L. Jacob.The Dose-Response Relation in Pharmacology, Springer-Verlag, New York, 1979.

    Book  Google Scholar 

  18. J. Jacquez.Compartmental Analysis in Biology and Medicine, Elsevier, Amsterdam, 1972.

    Google Scholar 

  19. R. Brown. Compartmental system analysis: State of the art.IEEE Trans. Biomed. Eng. BNE-27 (1):1–11 (1980).

    Article  Google Scholar 

  20. A. Rescigno and G. Segre.Drug and Tracer Kinetics, Blaisdell, Massachusetts, 1966.

    Google Scholar 

  21. G. Swan and T. Vincent. Optimal control analysis in the chemotherapy of Ig multiple myeloma.Bull. Math. Biol. 39:317–337 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. G. Brunton and T. Wheldon. The Gompertz equation and the construction of tumor growth curves.Cell Tissue Kinet. 13:455–460 (1980).

    CAS  PubMed  Google Scholar 

  23. M. Gibaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1975.

    Google Scholar 

  24. F. Schabel, M. Skipper, M. Trader, W. Laster, T. Corbett, and D. Griswold. Concepts for controlling drug resistant tumor cells. In M. Mourisden and T. Palshof (eds.),Breast Cancer—Experimental and Clinical Aspects, Pergamon Press, Oxford, 1980, pp. 199–221.

    Google Scholar 

  25. H. Skipper. Booklets 11, 12, 16, 17, Southern Research Institute, Birmingham, Alabama, 1980.

    Google Scholar 

  26. S. Shackney. A computer model for tumor growth and chemotherapy, and its application to L1210 leukemia treated with cytosine arabinoside (NSC-63878).Cancer Chemother. Rep. 54:399–429 (1970).

    CAS  PubMed  Google Scholar 

  27. T. Vietti, F. Valeriote, R. Kalish, and D. Coulter. Kinetics of cytotoxicity of VM-26 and VP-16-213 on L1210 leukemia and hematopoietic stem cells.Cancer Treat. Rep. 62:1313–1320 (1978).

    CAS  PubMed  Google Scholar 

  28. M. Berenbaum. Criteria for analysing interactions between biologically active agents.Adv. Cancer Res. 35:269–235 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. K. Chadwick and H. Leenhouts.The Molecular Theory of Radiation Biology. Springer-Verlag, Berlin, 1981.

    Book  Google Scholar 

  30. W. Bruce, B. Meeker, and F. Valeriote. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administeredin vivo.J. Natl Cancer Inst. 37:233–245 (1966).

    CAS  PubMed  Google Scholar 

  31. T. Borsa, G. Whitmore, and F. Valeriote. Studies on the persistence of methotrexate, cytosine arabinoside, and leucovorin in serum of mice.J. Natl. Cancer Inst. 42:235–242 (1969).

    CAS  PubMed  Google Scholar 

  32. H. Skipper, F. Schabel, and W. Wilcox. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia.Cancer Chemother. Rep. 35:1–111 (1964).

    CAS  PubMed  Google Scholar 

  33. J. Lankelma and E. Van der Kleijn. The plasma concentration of methotrexate. In F. Merkus (ed.),The Serum Concentration of Drugs, Excerpta Medica. Amsterdam, 1980, pp. 244–249.

    Google Scholar 

  34. P. Leme, P. Creaven, L. Allen, and M. Berman. Kinetic model for the disposition and metabolism of moderate and high dose methotrexate (NSC-740) in man.Cancer Chemother. Rep. 59:811–817 (1975).

    CAS  PubMed  Google Scholar 

  35. S. Chuang. Mathematic models for cancer chemotherapy: Pharmacokinetic and cell kinetic considerations.Cancer Treat. Rep. 59:827–842 (1975).

    CAS  Google Scholar 

  36. S. Chuang and H. Lloyd. Analysis and identification of stochastic compartment models in pharmacokinetics: Implication for cancer chemotherapy.Math. Biosci. 22:57–74 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work described in this paper was supported by the National Health and Medical Research Council of Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duc, H.N., Nickolls, P.M. Multicompartment models of cancer chemotherapy incorporating resistant cell populations. Journal of Pharmacokinetics and Biopharmaceutics 15, 145–177 (1987). https://doi.org/10.1007/BF01062341

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062341

Key words

Navigation