Skip to main content
Log in

Bioavailability assessment and pharmacologie response: Impact of first-pass loss when both drug and metabolites are active

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 1990

Abstract

Many drugs with low oral bioavailability due to substantial first-pass hepatic loss form pharmacologically active metabolites. In such cases, the pharmacologic activity after oral administration is greater than anticipated from bioavailability data, based on chemical assay of drug alone. This paper explores the use and meaning of pharmacologic data to assess bioavailability under these circumstances. Two steady-state concepts are introduced: a metabolite-to-drug intravenous delivery rate potency ratioand an effective bioavailability,defined as the ratio of intravenous-to-oral delivery rates of drug required to produce the same response. Using a combined phar-macokinetic-pharmacodynamic model, the impact of various factors on the effective bioavailability and on its estimation, using the intravenous-to-oral dose ratio required to produce the same area under the response time curve after acute administration, are explored. It is proposed that attention be centered more on comparison of rates of administration, or doses, that produce equal responses than on bioavailability per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Smolen and W. A. Weigand. Drug bioavailability and pharmacokinetic analysis from pharmacological data.J. Pharmacokin. Biopharm. 1:329–337 (1973).

    Article  Google Scholar 

  2. V. F. Smolen. Theoretical and computational basis for drug bioavailability determinations using pharmacological data. I. General considerations and procedures.J. Pharmacokin. Biopharm. 4:337–353 (1976).

    Article  CAS  Google Scholar 

  3. Code of (USA) Federal Regulations.Bioavailability and Bioequivalence Requirements, Vol. 21. Part 320.

  4. S. Pond and T. N. Tozer. First pass elimination: Basic concepts and clinical consequences.Clin. Pharmacokin. 9:1–25 (1984).

    Article  CAS  Google Scholar 

  5. B. Ablad, K. O. Borg, G. Johnsson, C-G. Regärdh, and L. Sölvell. Combined pharmacokinetic and pharmacodynamic studies of alprenolol and 4-hydroxy-alprenolol in man.Life Sci. 14:693–700 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. N. H. G. Holford and L. B. Sheiner. Kinetics of pharmacological response.Pharmacol. Ther. 16:143–166 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. N. H. G. Holford, P. E. Coates, T. W. Güntert, S. Riegelman, and L. B. Sheiner. The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: concentration-effect relationship.Br. J. Clin. Pharmacol. 11: 187–195 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. D. J. Coltart and D. G. Shand. Plasma propranolol levels in the quantitative assessment of β-adrenergic blockade in man.Br. Med. J. 3:731–734 (1970).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. E. Müller-Schweinitzer. Pharmacological actions of the main metabolites of dihydroergotamine.Eur. J. Clin. Pharmacol. 26:699–705 (1984).

    Article  PubMed  Google Scholar 

  10. H. Echizen, B. Vogelgesang, and M. Eichelbaum. Effects of d, 1-verapamil on atrioventricular conduction in relation to its stereoselective first-pass metabolism.Clin. Pharmacol. Ther. 38:71–76 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. L. Martis and R. Levy. Bioavailability calculations for drugs showing simultaneous first-order and capacity limited elimination kinetics.J. Pharmacokin. Biopharm. 1:283–294 (1973).

    Article  CAS  Google Scholar 

  12. J. B. Houston. Drug metabolite kinetics.Pharmacol. Ther. 15:521–552 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. G. Levy. Variability in animal and human pharmacodynamic studies. In M. Rowland, L. B. Sheiner and J-L. Steimer, (eds.),Variability in Drug Therapy, Raven Press, New York, 1985, pp. 125–138.

    Google Scholar 

  14. V. F. Smolen, H. R. Murdock, W. P. Stolman, J. W. Clevenger, L. W. Combs, and E. J. Williams. Pharmacological response data for comparative bioavailability studies for chlorpromazine oral dosage forms in humans. 1. Pupilometry.J. Clin. Pharmacol. 15:734–751 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. H. Möller, U. Gundert-Remy, and W. Stüber. Bioäquivalenz von clonidin-retard präparaten mit hilfe der pharmokokinetik under pharmakodynamik.Pharm. Ind. 47: 93–98 (1985).

    Google Scholar 

  16. H. Blume, G. Stenzhorn, and S. L. Ali. Zur bioverfugbarkeit und pharmakodynamischen aktivität handelsüblicher glibenclamid-fertigarzneimittel.Pharmazeut. Zeit. 130: 1062–1069 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF01062275.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowland, M. Bioavailability assessment and pharmacologie response: Impact of first-pass loss when both drug and metabolites are active. Journal of Pharmacokinetics and Biopharmaceutics 16, 573–593 (1988). https://doi.org/10.1007/BF01062013

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062013

Key words

Navigation