Skip to main content
Log in

Structural Effects in Magnetoresistive Manganites and Mechanism of Metal-Insulator Transition

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Colossal magnetoresistivity (CMR) is caused by a magnetic field-induced insulator-to-metal transition. It is arguably one of the most dramatic phenomena that occur in solids due to competing forces in a complex system. In the CMR oxides the electron-phonon coupling and spin correlations that favor charge localization are competing against the electron kinetic energy and lattice elasticity that prefer charge delocalization. The CMR phenomenon occurs at the crossover point of charge-localized (insulating) and charge-delocalized (metallic) states, where the system is particularly susceptible to external stimuli such as a magnetic field. The competitions among these forces are usually considered globally as volume averages. However, since the system is complex and the phenomenon is non-linear, local fluctuations dominate the behavior of the system near the critical point. Therefore the system would appear spatially inhomogeneous if the measurement is made with certain time and length scales. To characterize and understand such a system it is required to deploy local approaches in which the competing interactions are evaluated locally. Experimentally, the pulsed neutron pair-density function (PDF) analysis is one of the methods of local structural study. Using the PDF technique it is suggested that the phase transition occurs via local and percolative processes. Also through the analysis of the local structure it is shown that the ionic size effect on the CMR phenomenon is not caused by a change in the band width as is usually assumed, but is due to local structural changes that affect polaron stability. The critical ionic size determined by this approach is in excellent agreement with experimental observations. The PDF results also indicate that the local structure of layered manganites is close to that of perovskite, suggesting that they share common elements of the CMR mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. R. Bishop and H.Röder, Curr. Opinion Solid State Materials Sci. 2, 244 (1997).

    Google Scholar 

  2. J. M. D. Coey, M. Viret, and S. von Molnar, Advan. Physics 48, 167 (1999).

    Google Scholar 

  3. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Google Scholar 

  4. Y. Tokura (ed.), Colossal Magnetoresistance Oxides (Gordon & Breach, London, in press).

  5. A. P. Ramirez, J. Phys. Cond. Matter 9, 8171 (1997).

    Google Scholar 

  6. G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950); J. H. Van Santen, and G. H. Jonker, Physica 16, 599 (1950).

    Google Scholar 

  7. C. Zener, Phys. Rev. 81, 440 (1951).

    Google Scholar 

  8. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Google Scholar 

  9. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Google Scholar 

  10. P. G. DeGennes, Phys. Rev. 118, 141 (1960).

    Google Scholar 

  11. A. J. Millis, P. B. Littlewood, and B. I. Shairman, Phys. Rev. Lett. 74, 5144 (1995).

    Google Scholar 

  12. H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).

    Google Scholar 

  13. S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier, and J. D. Thompson, Phys. Rev. Lett. 77, 715 (1996).

    Google Scholar 

  14. T. Egami, J. Low Temp. Phys. 105, 791 (1996).

    Google Scholar 

  15. P. Dai, J. Zhang, H. A. Mook, S.-H. Liou, P. A. Dowben, and E. W. Plummer, Phys. Rev. B 54, R3694 (1996).

    Google Scholar 

  16. C. H. Booth, F. Bridges, G. J. Snyder, and T. H. Geballe, Phys. Rev. B 54, R15606 (1996).

    Google Scholar 

  17. D. Louca, T. Egami, J. Appl. Phys. 81, 5484 (1997).

    Google Scholar 

  18. T. Egami, D. Louca, and R. J. McQueeney, J. Superconductivity 10, 323 (1997).

    Google Scholar 

  19. D. Louca, T. Egami, E. L. Brosha, H. Röder, and A. R. Bishop, Phys. Rev. B 56, R8475 (1997).

    Google Scholar 

  20. A. Lanzara, N. L. Saini, M. Brunelli, F. Natali, A. Bianconi, P. G. Radaelli, and S.-W. Cheong, Phys. Rev. Lett. 81, 878 (1998).

    Google Scholar 

  21. D. Louca and T. Egami, Phys. Rev. B 59, 6193 (1999).

    Google Scholar 

  22. T. Egami, in Structure and Bonding, ed. J. B. Goodenough (Springer-Verlag, Berlin, 1999), in press.

    Google Scholar 

  23. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

    Google Scholar 

  24. H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).

    Google Scholar 

  25. Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature (London) 380, 141 (1996).

    Google Scholar 

  26. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958).

    Google Scholar 

  27. Y. Moritomo, Y. Tomioka, A. Asamitsu, Y. Tokura, and Y. Matsui, Phys. Rev. B 51, 3297 (1995).

    Google Scholar 

  28. J. F. Mitchell, D. N. Argyriou, J. D. Jorgensen, D. G. Hinks, C. D. Potter, and S. D. Bader, Phys. Rev. B 55, 63 (1997).

    Google Scholar 

  29. D. Louca, G. H. Kwei, and J. F. Mitchell, Phys. Rev. Lett. 80, 3811 (1998).

    Google Scholar 

  30. B. E. Warren, X-ray Diffraction (Dover Publication, New York, 1969, 1990).

    Google Scholar 

  31. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley & Sons, New York, 1968).

    Google Scholar 

  32. T. Egami, Mater. Trans. JIM 31, 163 (1990).

    Google Scholar 

  33. B. H. Toby and T. Egami, Acta Crystallogr. A 48, 336 (1992).

    Google Scholar 

  34. T. Egami, in Local Structure from Diffraction, M. Thorpe and S. J. L. Billinge, eds. (Plenum, New York, 1998) p. 1.

    Google Scholar 

  35. S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).

    Google Scholar 

  36. S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 81, 5612 (1998).

    Google Scholar 

  37. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).

    Google Scholar 

  38. M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285, 1540 (1999).

    Google Scholar 

  39. M. Vehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature(London) 399, 560 (1999).

    Google Scholar 

  40. L. P. Gor'kov and V. Z. Kresin, JETP Lett. 67, 985 (1998).

    Google Scholar 

  41. P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S.-W. Cheong, J. D. Jorgensen, and D. N. Argyriou, Phys. Rev. B 56, 8265 (1997).

    Google Scholar 

  42. M. O. Dzero, L. P. Gor'kov, and V. Z. Kresin, Phys. Rev. B, in press.

  43. J. A. Fernandez-Baca, P. Dai, H. Y. Hwang, C. Kloc, and S.-W. Cheong, Phys. Rev. Lett. 80, 4012 (1998).

    Google Scholar 

  44. T. Egami and D. Louca, J. Superconductivity 12, 23 (1999).

    Google Scholar 

  45. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Google Scholar 

  46. T. Egami, D. Louca, W. Dmowski, and J. F. Mitchell, unpublished.

  47. S. Ishihara and S. Maekawa, Phys. Rev. B 58, 13442 (1998); T. Akimoto, Y. Moritomo, K. Ohoyama, S. Okamoto, S. Ishihara, S. Maekawa, and A. Nakamura, Phys. Rev. B 59, R14156 (1999).

    Google Scholar 

  48. Y. Murakami et al., Phys. Rev. Lett. 80, 1932 (1998); Y. Murakami et al., Phys. Rev. Lett. 81, 582 (1998).

    Google Scholar 

  49. M. Benfatto, Y. Joly, and C. R. Natoli, Phys. Rev. Lett. 83, 636 (1999).

    Google Scholar 

  50. C. H. Chen and S.-W. Cheong, Phys. Rev. Lett. 76, 4042 (1996).

    Google Scholar 

  51. P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).

    Google Scholar 

  52. H. Kawano, R. Kajomoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura, Phys. Rev. Lett. 78, 4253–4256 (1997).

    Google Scholar 

  53. H. Kuwahara, T. Okuda, Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. Lett. 82, 4316–4319 (1999).

    Google Scholar 

  54. J. M. Tranquada, B. J. Sternlieb, and J. D. Axe, Nature (London) 375, 561 (1995).

    Google Scholar 

  55. M. K. Crawford et al., Phys. Rev. B 44, 7749 (1991).

    Google Scholar 

  56. B. Büchner et al., Phys. Rev. Lett. 73, 1841 (1994).

    Google Scholar 

  57. J. Zaanen and O. Gunnarson, Phys. Rev. B 40, 7391 (1989).

    Google Scholar 

  58. C. H. Chen, S.-W. Cheong, and H. Y. Hwang, J. Appl. Phys. 81, 4326 (1997).

    Google Scholar 

  59. S. Mori, C. H. Chen, and S.-W. Cheong, Nature (London) 392, 473 (1998).

    Google Scholar 

  60. P. G. Radaelli, D. E. Cox, L. Capogna, S.-W. Cheong, and M. Marezio, Phys. Rev. B 59, 14440 (1999).

    Google Scholar 

  61. I. B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds (John Wiley & Sons, Inc., New York, 1996) p. 297.

    Google Scholar 

  62. T. Kimura, A. Asamitsu, Y. Tomioka, and Y. Tokura, Science 274, 1698 (1996); Phys. Rev. Lett. 79, 3720 (1997).

    Google Scholar 

  63. R. Osborn, S. Rosenkranz, D. N. Argyriou, L. Vasiliu-Doloc, J. W. Lynn, S. K. Sinha, J. F. Mitchell, K. E. Gray, and S. D. Bader, Phys. Rev. Lett. 81, 3964 (1998).

    Google Scholar 

  64. T. Kimura et al., Science 274, 1698 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egami, T., Louca, D. Structural Effects in Magnetoresistive Manganites and Mechanism of Metal-Insulator Transition. Journal of Superconductivity 13, 247–261 (2000). https://doi.org/10.1023/A:1007704117293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007704117293

Navigation