Skip to main content
Log in

Wave propagation phenomena from a spatiotemporal viewpoint: Resonances and bifurcations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

By using biorthogonal decompositions, we show how uniformly propagating waves, togehter with their velocity, shape, and amplitude, can be extracted from a spatiotemporal signal consisting of the superposition of various traveling waves. The interaction between the different waves manifests itself in space-time resonances in case of a discrete biorthogonal spectrum and in resonant wavepackets in case of a continuous biorthogonal spectrum. Resonances appear as invariant subspaces under the biorthogonal operator, which leads to closed sets of algebraic equations. The analysis is then extended to superpositions of dispersive waves for which the (Fourier) dispersion relation is no longer linear. We then show how a space-time bifurcation, namely a qualitative change in the spatiotemporal nature of the solution, occurs when the biorthogonal operator is a nonholomorphic function of a parameter. This takes place when two eigenvalues are degenerate in the biorthogonal spectrum and when the spatial and temporal eigenvectors rotate within each eigenspace. Such a scenario applied to the superposition of traveling waves leads to the generation of additional waves propagating at new velocities, which can be computed from the spatial and temporal eigenmodes involved in the process (namely the shape of the propagating waves slightly before the bifurcation). An eigenvalue degeneracy, however, does not necessarily lead to a bifurcation, a situation we refer to as being self-avoiding. We illustrate our theoretical predictions by giving examples of bifurcating and self-avoiding events in propagating phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed. (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  2. N. Aubry, On the hidden beauty of the proper orthogonal decomposition,Theor. Comp. Fluid Dyn. 2:339–352 (1991).

    Google Scholar 

  3. N. Aubry, R. Guyonnet, and R. Lima, Spatio-temporal analysis of complex signals: Theory and Applications,J. Stat. Phys. 64:683–739 (1991).

    Google Scholar 

  4. N. Aubry, R. Guyonnet, and R. Lima, Spatio-temporal symmetries and bifurcations via biorthogonal decompositions,J. Nonlinear Sci. 2:183–215 (1992).

    Google Scholar 

  5. N. Aubry, R. Guyonnet, and R. Lima, Turbulence spectra,J. Stat. Phys. 67:183–215 (1992).

    Google Scholar 

  6. Aubry, P. Holmes, J. L. Lumley, and E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary layer,J. Fluid Mech. 192:115–173 (1988).

    Google Scholar 

  7. N. Aubry and W. Lian, Exploiting symmetries in applied and numerical analysis, inLectures in Applied Mathematics, E. Allgower, K. Georg, and R. Miranda, eds. (1993).

  8. N. Aubry and W. Lian, Self-Similarity of in Transitional and Turbulent Compressible Flows, L. D. Kral and T. A. Zhang, eds., FED, Vol. 151, ASME 1993), pp. 53–60.

  9. N. Aubry, W. Lian, and E. S. Titi, Preserving symmetries in the proper orthogonal decomposition,SIAM J. Stat. Sci. Comput. 14(2):483–505 (1993).

    Google Scholar 

  10. C. Baesens and R. S. Mackay, Uniformly travelling water waves from a dynamical systems viewpoint: Some insights into bifurcations from Stoke's family,J. Fluid Mech. 241:333–347 (1992).

    Google Scholar 

  11. G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows,Annu. Rev. Fluid Mech. 25:539–575 (1993).

    Google Scholar 

  12. G. Berkooz, P. Holmes, and J. L. Lumley, Coherent structures in random media and wavelets, in Proceedings of a NATO Advanced Research Workshop held in Estella, Spain, 8–14 September 1991, C. Pérez-Garcia, ed., “New Trends: Nonlinear Dynamics: Nonvariational Aspects,”Physica D 61:47–58 (1992).

  13. F. Carbone, J. Liu, J. Gollub, N. Aubry, and R. Lima, Spatio-temporal analysis and bifurcations of wave patterns in flowing films, in preparation.

  14. P. Coullet and J. Lega, Defect-mediated turbulence in wave patterns,Europhys. Lett. 7:511–516 (1988).

    Google Scholar 

  15. P. Coullet, S. Fauve, and E. Tirapegui, Large scale instability of nonlinear standing waves,J. Phys. Lett. (Paris)46:L787—L791 (1985).

    Google Scholar 

  16. R. Courant and D. Hilbert,Methoden der mathematischen Physik (Julius Springer, 1924).

  17. A. Deane, G. E. Karniadakis, I. G. Kevrekidis, and S. A. Orszag, Low dimensional models for complex geometry flows: Application to grooved channels and circular cylinders,Phys. Fluids A 3:2337 (1991).

    Google Scholar 

  18. Y. Demay and G. Iooss, Calcul des solutions bifurquées pour le problème de Couette-Taylor avec les deux cylinders en rotation,J. Méc. Theor. Appl. (Spec. Iss.)1984:193–216 (1984).

    Google Scholar 

  19. M. N. Glauser, S. J. Leib, and W. K. George, inTurbulent Shear Flow 5 (Springer-Berlag, Berlin, 1987).

    Google Scholar 

  20. R. Grimshaw, Resonant wave interactions in a stratified shear flow,J. Fluid Mech. 190:3357–374 (1988).

    Google Scholar 

  21. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  22. J. K. Hunter, Interacting weakly nonlinear hyperbolic and dispersive waves, inMicrolocal Analysis and Nonlinear Waves, M. Beals, R. B. Melrose, and J. Rauch, eds. (IMA Volumes in Mathematics and Its Applications, Vol. 30, 1991), pp. 83–111.

  23. J. L. Joly and J. Rauch, Nonlinear resonance can create dense oscillations, inMicrolocal Analysis and Nonlinear Waves, M. Beals, R. B. Melrose, and J. Rauch, eds. (IMA Volumes in Mathematics and Its Applications, Vol. 30, 1991), pp. 113–123.

  24. K. Karhunen, Zur spektral theorie stochatischer prozesse,Ann. Acad. Sci. Fenn. Ser. A 1 (1944).

  25. T. Kato,Perturbation Theory for Linear Operators, 2nd ed. (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  26. M. Kirby and D. Armbruster, Reconstructing phase space from PDE simulations,Z. Angew. Math. Phys. 43:999–1022 (1922).

    Google Scholar 

  27. P. Kolodner, C. M. Surko, and H. Williams, Dynamics of traveling waves near the onset of convection in binary fluid mixtures,Physica D 37:319–333 (1989).

    Google Scholar 

  28. J. Liu, J. D. Paul, E. Banilower, and J. P. Gollub, Film flow instabilities and spatiotemporal dynamics, inProceedings of the First Experimental Chaos Conference, S. Vohra, M. Spano, M. Schlesinger, L. Picora, and W. Ditto, eds. (World Scientific, River Edge, New Jersey, 1992).

    Google Scholar 

  29. J. Liu, J. D. Paul, and J. P. Gollub, Measurements of the primary instabilities of film flows,J. Fluid Mech. 250:69–101 (1993).

    Google Scholar 

  30. J. Liu and J. P. Gollub, Onset of spatially chaotic waves on flowing films,Phys. Rev. Lett. 70(15):2289–2292.

  31. M. Loève,Probability Theory (Van Nostrand, New York, 1955).

    Google Scholar 

  32. J. L. Lumley, The structure of inhomogeneous turbulent flows, inAtmospheric Turbulence and Radio Propagation, A. M. Yaglom and V. I. Tatarski, eds. (Nauka, Moscow, 1967), pp. 166–178.

    Google Scholar 

  33. J. L. Lumley,Stochastic Tools in Turbulence (Academic Press, New York, 1970).

    Google Scholar 

  34. A. Majda and R. R. Rosales, Resonantly interacting hyperbolic waves, I: A single space variable,Stud. Appl. Math. 71:149–179 (1984).

    Google Scholar 

  35. W. I. Neuman, D. K. Campbell, and J. M. Hyman, Identifying coherent structures in nonlinear wave propagation,Chaos 1:77–94 (1991).

    Google Scholar 

  36. M. Reed and B. Simon,Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, 1980).

  37. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky,Nonlinear Physics from the Pendulum to Turbulence and Chaos (Harwood, 1988).

  38. S. Sanghi and N. Aubry, Interaction mode models of near wall turbulence,J. Fluid Mech. 247:455–488 (1993).

    Google Scholar 

  39. L. Sirovich, Chaotic dynamics of coherent structures,Physica D 37:126–145 (1989).

    Google Scholar 

  40. L. Sirovich, M. Kirby, and M. Winter, An eigenfunction approach to large scale transitional structures in jet flow,Phys. Fluids A 2:127–136 (1990).

    Google Scholar 

  41. S. Slimani, N. Aubry, P. Kolodner, and R. Lima, Biorthogonal decomposition analysis of dispersive chaos in binary fluid convection, inBifurcation Phenomena and Chaos in Thermal Convection, H. H. Bau, L. Bertram, and S. A. Korpela, eds. (ASME, New York, 1992), pp. 39–46.

    Google Scholar 

  42. J. J. Stoker,Water Waves (Interscience, New York).

  43. J. von Neuman, Charakterisiering des Spektrums eines Integraloperators,Actualités Sci. Ind. (Paris)229 (1935).

  44. G. B. Whitham,Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974).

    Google Scholar 

  45. P. K. Yeung, J. Brasseur, and Q. Wang, Dynamics of large-to-small scale couplings in forced turbulence: Physical and Fourier-space views,J. Fluid Mech., submitted (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, N., Carbone, F., Lima, R. et al. Wave propagation phenomena from a spatiotemporal viewpoint: Resonances and bifurcations. J Stat Phys 76, 1005–1043 (1994). https://doi.org/10.1007/BF02188696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188696

Key Words

Navigation