Skip to main content
Log in

Highly purified particulate guanylate cyclase from rat lung: characterization and comparison with soluble guanylate cyclase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Guanylate cyclase was purified 1000-fold from washed rat lung particulate fractions to a final specific activity of 500 nmoles cyclic GMP produced/min/mg protein by a combination of detergent extraction and chromatography on concanavalin A-Sepharose, GTP-agarose, and blue agarose. Particulate guanylate cyclase has a molecular weight of 200 000 daltons, a Stokes radius of 48 Å and a sedimentation coefficient of 9.4 while the soluble form has a molecular weight of 150 000 daltons, a Stokes radius of 44 Å, and a sedimentation coefficient of 7.0. Whereas the particulate enzyme is a glycoprotein with a specific affinity for concanavalin A and wheat germ agglutinin, the soluble form of guanylate cyclase did not bind to these lectins. Purified particulate guanylate cyclase did not cross-react with a number of monoclonal antibodies generated to the soluble enzyme. While both forms of the enzyme could be regulated by the formation of mixed disulfides, the particulate enzyme was relatively insensitive to inhibition by cystine. With GTP as substrate both forms of the enzyme demonstrated typical kinetics, and with GTP analogues negative cooperativity was observed with both enzyme forms. These data support the suggestion that the two forms of guanylate cyclase possess similar catalytic sites, although their remaining structure is divergent, resulting in differences in subcellular distribution, physical characteristics, and antigenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardman, J. G. and Sutherland, E. W., 1969. J. Biol. Chem. 244: 6363–6370.

    Google Scholar 

  2. White, A. A. and Aurbach, G. D., 1969. Biochim. Biophys. Acta 191: 686–697.

    Google Scholar 

  3. Kimura, H. and Murad, F., 1974. J. Biol. Chem. 249: 6910–6916.

    Google Scholar 

  4. Kimura, H. and Murad, F., 1975. J. Biol. Chem. 250: 4810–4817.

    Google Scholar 

  5. Kimura, H. and Murad, F., 1975. Life Sci. 17: 837–844.

    Google Scholar 

  6. Kimura, H. and Murad, F., 1975. Metabolism 24: 439–445.

    Google Scholar 

  7. Arnold, W. P., Mittal, C. K., Katsuki, S. and Murad, F., 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 3203–3207.

    Google Scholar 

  8. Mittal, C. K. and Murad, F., 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 4360–4364.

    Google Scholar 

  9. Glass, D. B., Frey, W., Carr, D. W. and Goldberg, N. D., 1977. J. Biol. Chem. 252: 1279–1285.

    Google Scholar 

  10. Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S. and Kimura, H., 1978. Adv. Cyclic Nucleotide Res. 9: 145–158.

    Google Scholar 

  11. Braughler, J. M., Mittal, C. K. and Murad, F., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 219–222.

    Google Scholar 

  12. Garbers, D. L., 1979. J. Biol. Chem. 254: 240–243.

    Google Scholar 

  13. Lewicki, J. A., Brandwein, H. J., Waldman, S. A. and Murad, F., 1980. J. Cyclic Nucleotide Res. 6: 283–296.

    Google Scholar 

  14. Nakane, M. and Deguchi, T., 1980. Biochim. Biophys. Acta 631: 20–27.

    Google Scholar 

  15. Gerzer, R., Hofmann, F. and Schultz, G., 1981. Eur. J. Biochem. 116: 479–486.

    Google Scholar 

  16. Steiner, A. L., Parker, C. W. and Kipnis, D. M., 1972. J. Biol. Chem. 247: 1106–1113.

    Google Scholar 

  17. Schaffner, W. and Weissman, C., 1973. Anal. Biochem. 56: 502–504.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. C. and Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  19. Hartree, E. F., 1972. Anal. Biochem. 48: 422–427.

    Google Scholar 

  20. Peters, W. H. M., Fleuren-Jakobs, A. M. M., Kamps, K. M. P., de Pont, J. J. H. H. M. and Bonting, S. L., 1982. Anal. Biochem. 124: 349–352.

    Google Scholar 

  21. Peterson, G. L., 1977. Anal. Biochem. 83: 346–356.

    Google Scholar 

  22. Brandwein, H. J., Lewicki, J. A. and Murad, F., 1981. Proc. Natl. Acad. Sci. U.S.A. 78: 4241–4245.

    Google Scholar 

  23. Neer, E. J., 1974. J. Biol. Chem. 249: 6527–6531.

    Google Scholar 

  24. Narayanan, N., Johns, A. and Sulakhe, P., 1981. Arch. Biochem. Biophys. 211: 166–178.

    Google Scholar 

  25. Neer, E. J. and Sukiennik, E. A., 1975. J. Biol. Chem. 250: 7905–7909.

    Google Scholar 

  26. Gathers, D. L., Dyer, E. L. and Hardman, J. G., 1975. J. Biel. Chem. 250: 382–387.

    Google Scholar 

  27. White, A. A., 1975. Adv. Cyclic Nucleotide Res. 5: 353–373.

    Google Scholar 

  28. Nakazawa, K., Sand, M. and Sacto, T., 1976. Biochim. Biophys. Acta 44: 563–570.

    Google Scholar 

  29. Durham, J. P., 1976. Eur. J. Biochem. 61: 535–544.

    Google Scholar 

  30. Seigel, M. I., Puca, G. A., Cuatrecasas, P., 1976. Biochim. Biophys. Acta 438: 310–323.

    Google Scholar 

  31. Gray, J. P., Drummond, G. I., Luk, D. W., Hardman, J. G. and Sutherland, E. W., 1976. Arch. Biochem. Biophys. 172: 20–30.

    Google Scholar 

  32. Garbers, D. L., 1976. J. Biol. Chem. 251: 4071–4077.

    Google Scholar 

  33. Frey, W. H., Bowman, B. M., Newman, D. and Goldberg, N. D., 1977. J. Biol. Chem. 252: 4298–4304.

    Google Scholar 

  34. Murad, F., Arnold, W. P., Mittal, C. K. and Braughler, J. M., 1979. Adv. Cyclic Nucleotide Res. 11: 175–204.

    Google Scholar 

  35. Lewicki, J. A., Brandwein, H. J., Mittal, C. K., Arnold, W. P. and Murad, F., 1982. J. Cyclic Nucleotide Res. 8: 17–25.

    Google Scholar 

  36. Garbers, D. L. and Radnay, E. W., 1981. Adv. Cyclic Nucleotide Res. 14: 241–254.

    Google Scholar 

  37. Printz, M. P., Gregory, T. J., Lewicki, J. A. and Printz, J. M., 1976. Anal. Biochem. 73: 134–138.

    Google Scholar 

  38. Ochoa, J. L., Kristiansen, T. and Pahlman, S., 1979. Biochim. Biophys. Acta 577: 102–109.

    Google Scholar 

  39. Lis, H. and Sharon, N., 1973. Ann. Rev. Biochem. 42: 541–573.

    Google Scholar 

  40. Dye-Ligand Chromatography, Amicon Corp., Lexington, Massachusettes.

  41. Zwiller, J. and Mandel, P., 1978. C.R. Acad. Sci. Paris, Ser. D. 286: 423–426.

    Google Scholar 

  42. Wolin, M. S., Wood, K. S., Ignarro, L. J., 1982. J. Biol. Chem. 257: 13312–13320.

    Google Scholar 

  43. Wray, W., Boulikas, T., Wray, P. V. and Hancock, R., 1981. Anal. Biochem. 118: 197–203.

    Google Scholar 

  44. Chrisman, T. D., Garbers, D. L., Parks, M. A. and Hardman, J. G., 1975. J. Biol. Chem. 250: 374–381.

    Google Scholar 

  45. Murad, F. and Aurbach, G. D., 1977. The Year in Metabolism 1977 (Freinkel, N., ed.), pp. 1–31, Plenum Press, New York.

  46. Murad, F., Mittal, C. K., Arnold, W. P., Ichihara, K., Braughler, M. and El-Zayat, M., 1978. Molecular Biology and Pharmacology of Cyclic Nucleotides (Falco, G. and Paoletti, R., eds.), pp. 33–42, Elsevier, Amsterdam.

  47. Goldberg, N. D. and Haddox, M. K., 1977. Ann. Rev. Biochem. 46: 823–896.

    Google Scholar 

  48. Lacombe, M. L., Haguenauer-Tsapis, R., Stengel, D., Ben Salah, A. and Hanoune, J., 1980. FEBS Lett. 116: 79–84.

    Google Scholar 

  49. Waldman, S. A., Lewicki, J. A., Brandwein, H. J. and Murad, F., 1982. J. Cyclic Nucleotide Res. 8: 359–370.

    Google Scholar 

  50. Cuatrecasas, P., 1973. J. Biol. Chem. 248: 3528–3534.

    Google Scholar 

  51. Lewicki, J. A., Chang, B. and Murad, F., 1983. J. Biol. Chem. 258: 3509–3515.

    Google Scholar 

  52. Brandwein, H. J., Lewicki, J. A. and Murad, F., 1981. J. Biol. Chem. 356: 2958–2962.

    Google Scholar 

  53. Hofstee, B. H., 1959. Nature (Lond.) 184: 1296–1298.

    Google Scholar 

  54. Craven, P. A. and DeRubertis, F. R., 1976. Biochemistry 15: 5131–5137.

    Google Scholar 

  55. DeJonge, H. R., 1975. FEBS Lett. 55: 143–152.

    Google Scholar 

  56. Sulakhe, S. J., Leung, H. L. and Sulakhe, P. V., 1976. Biochem. J. 157: 713–719.

    Google Scholar 

  57. Brandwein, H. J., Lewicki, J. A., Waldman, S. A. and Murad, F., 1982. J. Biol. Chem. 257: 1309–1311.

    Google Scholar 

  58. Hill, A. V., 1910. J. Physiol. (Lond) 40: IV-VIII.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldman, S.A., Lewicki, J.A., Chang, L.Y. et al. Highly purified particulate guanylate cyclase from rat lung: characterization and comparison with soluble guanylate cyclase. Mol Cell Biochem 57, 155–166 (1983). https://doi.org/10.1007/BF00849192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00849192

Keywords

Navigation