Skip to main content
Log in

Regional profiles of steady-state levels of cyclic nucleotides, cyclic AMP phosphodiesterase, and guanylate cyclase activities during late stages of unilateral ischemia in gerbil forebrain

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The present study was an extension of earlier work regarding the role of cyclic nucleotides and related enzymes during cerebral ischemia in the gerbil. Following unilateral carotid occlusion, levels of cyclicAMP and cyclicGMP were measured in four rapidly inactivated brain regions at 3, 6, and 24 hr after permanent occlusion and at 2hr of occlusion plus 1 hr of reflow. An analysis of variance indicated significant minor fluctuations in the steady-state levels of the two cyclic nucleotides within the frontal cortex, the hippocampus, the striatum, and especially the olfactory tubercle with respect to occlusion time (3 and 24 hr) but not when comparing control vs ischemic hemispheres (except at 3hr). Changes occurred only in animals developing neurological symptoms of ischemia. At 24 hr postocclusion the specific activity of the lowK m form of cyclicAMP phosphodiesterase was elevated especially on the ischemie side when determined in homogenates of the four brain regions. Alternatively, the high-K m form of the enzyme in the presence or absence of Ca+-calmodulin was unchanged. Guanylate cyclase activity in tissue homogenates was not influenced by the conditions of ischemia until 24 hr had elapsed, an event likewise unique to symptomatic gerbils. The sensitivity of the enzyme to hematin-catalase was decreased in the ischemic hemispheres of the hippocampus, striatum, and olfactory tubercle. In addition, further activation of the hematin-catalase response by NaN3 was depressed in the ischemic side of the hippocampus and striatum. Taken together these and previous studies indicate that fluctuations in the steady-state levels of cyclic nucleotides that occur rather prominently during acute and to a lesser degree during prolonged ischemia are not correlated with associated changes in enzymes responsible for their synthesis and/or degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, M. S., and McCandless, D. W. (1982). Metabolic profile of hippocampal regions after bilateral ischemia and recovery.Neurochem. Res. 7 789–797.

    Google Scholar 

  • Bentue-Ferrer, D., Reymann, J. M., Bagot, H., Van den Driessche, J., de Certaines, J., and Allain, H. (1986). Aminergic neurotransmitter and water content changes in rats after transient forebrain ischemia.J. Neurochem. 47 1672–1677.

    Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43: 1369–1374.

    Google Scholar 

  • Bralet, J., Beley, P., Bralet, A. M., and Beley, A. (1980). Catecholamine levels and turnover during brain ischemia in the rat.J. Neural Transmiss. 48: 143–155.

    Google Scholar 

  • Chandler, M. J., Hornbrook, K. R., and Carney, J. M. (1985). Adenylate cyclase activity and motor behavior following cerebral ischemia in the unanesthetized gerbil.Life Sci. 37: 937–943.

    Google Scholar 

  • Choki, J., Greenberg, J., Sclarsky, B. A., and Reivich, M. (1984). Correlation between brain surface potassium and glucose utilization after bilateral cerebral ischemia in the gerbil.Stroke 15: 851–857.

    Google Scholar 

  • Christie-Pope, B. C., Palmer, G. C., Poulakos, L., Medina, M. A., Callahan, A. S., III, and Palmer, S. J. (1984). Regional cyclic AMP systems during secondary ischemia in gerbils: Influence of anesthetic agents.Exp. Neural. 84: 494–511.

    Google Scholar 

  • Christie-Pope, B. C., Palmer, G. C., Chronister, R. B., and Callahan, A. S., III (1985). Adenylate cyclase and histopathological changes in the gerbil brain following prolonged unilateral ischemia and recirculation.Stroke 16: 710–717.

    Google Scholar 

  • Crockard, H. A., Bhakoo, K. K., and Lascelles, P. T. (1982). Regional prostaglandin levels in cerebral ischemia.J. Neurochem. 38: 1311–1314.

    Google Scholar 

  • Dempsey, R. J., Roy, M. W., Cowen, D. E., and Maley, M. E. (1986). Lipoxygenase metabolites of arachidonic acid and the development of ischemic cerebral oedema.Neural. Res. 8: 53–56.

    Google Scholar 

  • Dixon, W. J. (ed.) (1983).Statistical Software, University of California Press, Berkeley.

    Google Scholar 

  • Djuricic, B. M., Paschen, W., Bosma, H.-J., and Hossman, K.-A. (1983). Biochemical changes during graded brain ischemia in gerbils. 1. Global biochemical alterations.J. Neurol. Sci. 58: 25–36.

    Google Scholar 

  • Donadio, M. F., Kozlowski, P. B., Kaplan, H., Wisniewski, H. M., and Majkowski, J. (1982). Brain vasculature and induced ischemia in seizure-prone and non-seizure-prone gerbils.Brain Res. 234: 263–273.

    Google Scholar 

  • Harik, S. I., Busto, R., and Martinez, E. (1982). Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia.J. Neurosci. 2: 409–414.

    Google Scholar 

  • Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Ohlstein, E. H., Gruetter, C. A., Kadowitz, P. J., and Baricos, W. H. (1981). Selective alterations in responsiveness of guanylate cyclase to activation by nitroso compounds during enzyme purification.Biochim. Biophys. Acta 673: 394–407.

    Google Scholar 

  • Jarrot, D. M., and Domer, F. R. (1980). A gerbil model of cerebral ischemia suitable for drug evaluation.Stroke 11: 203–209.

    Google Scholar 

  • Jones, D. J., and Stavinoha, W. B. (1977). Levels of cyclic nucleotides in mouse brain following 300ms microwave inactivation.J. Neurochem. 28: 759–763.

    Google Scholar 

  • Kleihues, P., Kobayashi, K., and Hossmann, K.-A. (1974). Purine nucleotide metabolism in the cat brain after one hour of complete ischemia.J. Neurochem. 23: 417–425.

    Google Scholar 

  • Kobayashi, M., Lust, W. D., and Passonneau, J. V. (1977). Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex.J. Neurochem. 29; 53–59.

    Google Scholar 

  • Lavyne, M. H., Moskowitz, M. A., Larin, F., Zervas, N. T., and Wurtman, R. J. (1975). Brain H3-catecholamine metabolism in experimental cerebral ischemia.Neurology 25: 483–485.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Polin phenol reagent.J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Lust, W. D., and Passonneau, J. V. (1979). Cyclic nucleotide levels in brain during ischemia and recirculation. In Palmer, G. C. (ed.),Neuropharmacology of Cyclic Nucleotides. Urban and Schwarzenberg, Baltimore-Munich, pp. 228–252.

    Google Scholar 

  • Lust, W. D., Mrsulja, B. B., Mrsulja, B. J., Passonneau, J. V., and Kltazo, I. (1975). Putative neurotransmitters and cyclic nucleotides in prolonged ischemia of the cerebral cortex.Brain Res. 98: 349–399.

    Google Scholar 

  • Matsumoto, M., Kimura, K., Fuijisawa, A., Matsuyama, T., Fukunaga, R., Yoneda, S., Wada, H., and Abe, H. (1984). Differential effect of cerebral ischemia on monoamine content of discrete brain regions of the Mongolian gerbil (Meriones unguiculatus).J. Neurochem. 42: 647–651.

    Google Scholar 

  • Moskowitz, M. A., Kiwak, K. J., Hekimian, K., and Levine, L. (1984). Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion.Science 224: 886–889.

    Google Scholar 

  • Mrsulja, B. B., Ueki, Y., and Lust, W. D. (1986). Regional metabolite profiles in early stages of global ischemia in the gerbil.Metab. Brain Dis. 1: 205–220.

    Google Scholar 

  • Nowak, T. S., Jr., Fried, R. L., Lust, W. D., and Passonneau, J. V. (1985). Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil.J. Neurochem. 44: 487–494.

    Google Scholar 

  • Onodera, H., Lijima, K., and Kogure, K. (1986). Mononucleotide metabolism in the rat brain after transient ischemia.J. Neurochem. 46: 1704–1710.

    Google Scholar 

  • Palmer, G. C. (1983). Effects of psychoactive drugs on cyclic nucleotides in the central nervous system.Prog. Neurobiol. 21: 1–133.

    Google Scholar 

  • Palmer, G. C. (1985). Cyclic nucleotides in stroke and related cerebrovascular disorders.Life Sci. 36: 1995–2006.

    Google Scholar 

  • Palmer, G. C., Palmer, S. J., and Legendre, J. L. (1981). Guanylate cyclase-cyclic GMP in mouse cerebral cortex and cerebellum: Modification by anticonvulsants.Exp. Neurol. 71: 601–614.

    Google Scholar 

  • Palmer, G. C., Palmer, S. J., Christie-Pope, B. C., Callahan, A. S., III, Taylor, M. D., and Eddy, L. J. (1985). Classification of ischemic-induced damage to Na+, K+-ATPase in gerbil forebrain: Modification by therapeutic agents.Neuropharmacology 24: 509–516.

    Google Scholar 

  • Paschen, W., Djuricic, B. M., Bosma, H.-J., and Hossmann, K.-A. (1983). Biochemical changes during graded brain ischemia in gerbils. 2. Regional evaluation of cerebral blood flow and brain metabolites.J. Neural. Sci. 58: 37–44.

    Google Scholar 

  • Pulsinelli, W. A., and Duffy, T. E. (1983). Regional energy balance in rat brain after transient forebrain ischemia.J. Neurochem. 40: 1500–1503.

    Google Scholar 

  • Schwartz, J. P., Mrsulja, B. B., Mrsulja, B. J., Passonneau, J. V., and Klatzo, I. (1976). Alterations of cyclic nucleotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex.J. Neurochem. 27: 101–107.

    Google Scholar 

  • Snider, R. M., and Richelson, E. (1983). Thrombin stimulation of guanosine 3′,5′-monophosphate formation in murine neuroblastoma cells (clone NIE-115).Science 221: 566–568.

    Google Scholar 

  • Tamura, A., Horizoe, H., and Fukuda, T. (1981). Relationship of cerebral vasculature to infarcted areas following unilateral common carotid artery ligation in the Mongolian gerbil.J. Cereb. Blood Flow Metabol. 1 (Suppl. 1): S194-S195.

    Google Scholar 

  • Taylor, M. D., Palmer, G. C., and Callahan, A. S., III (1982). Alterations of catecholamine-sensitive adenylate cylcase in gerbil cerebral cortex after bilateral ischemia.Exp. Neural. 76: 495–507.

    Google Scholar 

  • Taylor, M. D., Palmer, G. C., and Callahan, A. S., III (1984). Kinetics of GTP-modulation of adenylate cyclase in gerbil cerebral cortex after bilateral ischemia.J. Neurosci. Res. 12: 615–621.

    Google Scholar 

  • Waldman, S. A., Lewicki, J. A., Chang, L. Y., and Murad, F. (1983). Highly purified particulate guanylate cyclase from rat lung: Characterization and comparison with soluble guanylate cyclase.Mol. Cell. Biochem. 57: 155–166.

    Google Scholar 

  • Watanabe, H., and Ishii, S. (1976). The effect of brain ischemia on the levels of cyclic AMP and glycogen metabolism in gerbil brainin vivo.Brain Res. 102: 385–389.

    Google Scholar 

  • Winer, B. J. (1971).Statistical Principles in Experimental Design (2nd ed.), McGraw-Hill, New York.

    Google Scholar 

  • Yanagihara, T. (1978). Experimental stroke in gerbils: Correlation of clinical pathological and electroencephalographic findings and protein synthesis.Stroke 19: 155–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, G.C., Christie-Pope, B.C., Medina, M.A. et al. Regional profiles of steady-state levels of cyclic nucleotides, cyclic AMP phosphodiesterase, and guanylate cyclase activities during late stages of unilateral ischemia in gerbil forebrain. Metab Brain Dis 3, 161–177 (1988). https://doi.org/10.1007/BF00999233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999233

Key words

Navigation