Skip to main content
Log in

Sodium and potassium uptake in primary cultures of rat astroglial cells induced by long-term exposure to the basic astroglial growth factor (AGF2)

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astroglial cell cultures were derived from newborn rat forebrain and cultured for 5 days in serum containing-, and for an additional 4 days in a serum-free, defined medium. At the end of this 9-day-long period, basic astroglial growth factor (AGF2) was administered to the culture medium (10 ng per ml). Cells were subsequently cultured in AGF2 containing serum-free, defined medium for further two weeks. At definite intervals of culturing, unidirectional influx of both Na+ and K+ (INa and IK, respectively) was determined by applying22Na and42K. The AGF2-treated cultures showed highly increased, amiloride-sensitive INa at the early exposure period (2–8 hours), similar to that we have reported about cultured astroglia exposed to AGF2 for minutes. They also exhibited significant furosemide-sensitive-, while relatively poor ouabain-sensitive component of INa. However, at later periods of exposure to AGF2, INa was significantly reduced, particularly due to the decrease of its amiloride-sensitive component, while its furosemide-sensitive component further increased with the time of AGF2 treatment. In contrast to INa, the IK in the cultures exposed to AGF2 increased significantly in the course of the long-term exposure period, particularly the ouabain-, and furosemide-sensitive-components, while its amiloride-sensitive component, similarly to that of INa, decreased. Our findings show that the initial activation of the Na+/H+ (or K+/H+) exchange, what characterized the cation transport changes by short-term exposure of astroglial cells to AGF2 in our previous study, comes relatively soon to a cessation but activation of the Na+, K+-pump and the furosemide-sensitive Na+ and K+ influxes further increases. Thus, they suggest the possibility that furosemide-sensitive cation movements play a role, besides the Na+, K+-pump, in the control of glial cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hertz, L., and Chaban, G. 1982. Indications for an active role of astrocytes in potassium homcostasis at the cellular level; Potassium uptake and metabolic effects of potassium. Pages 157–174,in Pfeiffer, S. E. (Ed.), Neuroscience Approached Through Cell Culture, CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Hertz, L., Juurlink, B. H. J., and Szuchet, S. 1985. Cell cultures. Pages 603–661,in Lajtha, A. (Ed.), Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  3. Hertz, L. 1986. Potassium transport in astrocytes and neurones in primary cultures. Annals N. Y. Acad. Sci. 481:318–333.

    Google Scholar 

  4. Waltz, W., and Hertz, L. 1983. Intracellular ion changes of astrocytes in response to extracellular potassium. J. Neurosci, Res. 10:411–423.

    Google Scholar 

  5. Waltz, W., Wuttke, W., and Hertz, L. 1984. Astrocytes in primary cultures; membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties. Brain Research 292:367–374.

    PubMed  Google Scholar 

  6. Waltz, W., and Hinks, E. 1986. A transmembrane sodium cycle in astrocytes. Brain Research 368:226–232.

    PubMed  Google Scholar 

  7. Latzkovits, L., Torday, Cs., Labourdette, G., Pettmann, B., and Sensenbrenner, M. 1988. Sodium and potassium uptake in primary cultures of proliferating rat astroglial cells induced by shortterm exposure to an astroglial growth factor. Neurochem. Res. 13:837–848.

    PubMed  Google Scholar 

  8. Moolenaar, W. H., Defize, L. H. K., Tilly, B. C., Bierman, A. J., and de Laat, S. W. 1986. Transmembrane signalling by growth factors. Annals N.Y. Acad. Sci. 488:491–502.

    Google Scholar 

  9. Leffert, H. M., and Koch, K. S. 1985. Growth regulation by sodium ion fluxes. Pages 367–413,in Boynton, A. L. and Leffert, H. L. (eds.). Control of Animal Cell Proliferation, Vol. 1, Academic Press, New York.

    Google Scholar 

  10. Rozengurt, E., and Mendoza, S.A. 1985. Synergistic signals in mitogenesis: role of ion fluxes, cyclic nucleotides and protein kinase C in swiss 3T3 cells. Pages 229–242,in Hopkins, C. R., and Hughes, R. C. (eds.), Growth Factors: Structure and Function, Supplement 3, J. Cell. Sci., Company of Biologists Limited, Cambridge.

    Google Scholar 

  11. Pouyssegur, J., Franchi, A., L'Allemain, G., and Paris, S. 1985. Cytoplasmic pH, a key determinant of growth factor induced DNA synthesis in quiescent fibroblasts. FEBS Lett. 190:115–119.

    PubMed  Google Scholar 

  12. Moolenaar, W. H., Defize, L. H. K., and de, Laat, S. W. 1986. Ionic signalling by growth factor receptors. J. Exp. Biol. 124: 359–373.

    PubMed  Google Scholar 

  13. Moolenaar, W. H., Boonstra, J., van der Saag, P. T., and de Laat, S. W. 1981. Sodium/proton exchange in mouse neuroblastoma cells. J. Biol. Chem. 256:12883–12887.

    PubMed  Google Scholar 

  14. Moolenaar, W. H., Mummery, C. L., van der, Saag, P. T., and de Laat, S. W. 1981. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell 23:789–798.

    PubMed  Google Scholar 

  15. Moolenaar, W. H., Tsien, R. Y., van der Saag, P. T., and de Laat, S. W. 1983. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304:645–648.

    PubMed  Google Scholar 

  16. Paris, S., and Pouyssegur, J. 1984. Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H. J. Biol. Chem. 259:10989–10994.

    PubMed  Google Scholar 

  17. Kimelberg, H. K., Biddlecome, S., and Bourke, R. S. 1989. SITS-inhibitable Cl transport and Na+-dependent H+ production in primary astroglial cultures. Brain Res. 173:111–124.

    Google Scholar 

  18. Benos, D. J., Sapirstein, V. S. 1983. Characteristics of an amiloride-sensitive sodium entry pathway in cultured rodent glial and neuroblastoma cells. J. Cell. Physiol. 116:213–220.

    PubMed  Google Scholar 

  19. Sapirstein, V. S., and Benos, D. J. 1984. Activation of amiloridesensitive sodium transport in C6 glioma cells. J. Neurochem. 43:1098–1105.

    PubMed  Google Scholar 

  20. Jean, T., Frelin, C., Vigne P., and Lazdunski, M. 1986. The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur. J. Biochem. 160:211–219.

    PubMed  Google Scholar 

  21. Boonstra, J., Moolenaar, W. H., Harrison, P. H., Moed, P., van der Saag, P. T., and de Laat, S. W. 1983. Ionic responses and growth stimulation induced by nerve growth factor and epidermal growth factor in rat pheochromocytoma (PC12) cells. J. Cell. Biol. 97:92–98.

    PubMed  Google Scholar 

  22. Besterman, J. M., Tyrey, S. J., Cragoe, E. J. Jr., and Cuatrecasas, P. 1984. Inhibition of epidermal growth factor-induced mitogenesis by amiloride and an analog: evidence against a requirement for Na+/H+ exchange. Proc. Natl. Acad. Sci. USA 81:6762–6766.

    PubMed  Google Scholar 

  23. Rozengurt, E., and Heppel, L. A. 1975. Serum rapidly stimulates ouabain-sensitive86Rb uptake in quiesscent 3T3 cells. Proc. Natl. Acad. Sci. USA 72:4492–4495.

    PubMed  Google Scholar 

  24. Boonstra, J., Skaper, S. D., and Varon, S. 1982. Regulation of Na+, K+-pump activity by nerve growth factor in chick embryo dorsal root ganglion cells. J. Cell. Physiol. 113:28–34.

    PubMed  Google Scholar 

  25. Skaper, S. D., and Varon, S. 1983. Control of the Na+, K+-pump by nerve growth factor is essential to neuronal survival. Brain Res. 271:263–271.

    PubMed  Google Scholar 

  26. Smith, J. B., and Rozengurt, E. 1978. Serum stimulates the Na+, K+-pump in quiescent fibroblasts by increasing Na+ entry. Proc. Natl. Acad. Sci. USA 75:5560–5564.

    PubMed  Google Scholar 

  27. Mendoza, S. A., Wigglesworth, N. M., Pirkko, P., and Rozengurt, E. 1980. Na+ entry and Na+, K+-pump activity in murine, hamster and human cells-effect of monensin, serum, platelet extract, and viral transformation. J. Cell. Comp. Physiol. 103:17–27.

    Google Scholar 

  28. Mitsumoto, Y., and Mohri, T. 1986. Leucine transport in relation to the activities of Na+-H+ antiporter and Na+, K+-pump stimulated by serum and tumor promoter. Biochim. Biophys. Acta 861:187–193.

    PubMed  Google Scholar 

  29. O'Brien, T. G., and Krzeminski, K. 1983. Phorbol ester inhibits furosemide-sensitive potassium transport in BALB/c 3T3 preadipose cells. Proc. Natl. Acad. Sci. USA 80:4334–4338.

    PubMed  Google Scholar 

  30. Sussman, I., and O'Brien, T. G. 1985. Characterization of a BALB/c 3T3 preadipose cell mutant with altered Na+K+Cl cotransport activity. J. Cell. Physiol. 124:153–159.

    PubMed  Google Scholar 

  31. O'Brien, T. G., Prettyman, R., George, K. S., and yHerschman, H. R. 1988. A phorbol ester-nonproliferative variant of swiss 3T3 cells is deficient in Na+K+Cl cotransport activity. J. Cell. Physiol. 134:302–306.

    PubMed  Google Scholar 

  32. Johnson, J. H., Dunn, D. P., and Rosenberg, R. N. 1982. Furosemide-sensitive K+ channel glial cells but not neuroblastoma cells in culture. Biochem. Res. Commun. 109:100–115.

    Google Scholar 

  33. Chassande, O., Frelin, C., Farahifar, D., Jean, T., and Lazdunski, M. 1988. The Na+/K+/Cl cotransport in C6 glioma cells. Properties and role in volume regulation. Eur. J. Biochem. 171:425–433.

    PubMed  Google Scholar 

  34. Sensenbrenner, M., Pettmann, B., Labourdette, G., and Weibel, M. 1985. Properties of a brain growth factor promoting proliferation and maturation of rat astroglial cells in culture. Pages 345–360,in Dumont, J. E., Hamprecht, B., and Nunez, J. (eds.), Hormones and Cell Regulation, INSERM European Symposium, Elsevier Science Publishers B. V., Biomedical Division.

  35. Pettmann, B., Weibel, M., Daunc, G., Sensenbrenner, M., and Labourdette, G. 1982. Stimulation of proliferation and maturation of rat astroblasts in serum-free culture by an astroglial growth factor. J. Neurosci. Res. 8:463–476.

    PubMed  Google Scholar 

  36. Weibel, M., Pettmann, B., Labourdette, G., Miehe, E., Bock, E., and Sensenbrenner, M. 1985. Morphological and biochemical maturation of rat astroglial cells grown in a chemically defined medium, influences of an astroglial growth factor. Int. J. Dev. Neurosci. 3:617–630.

    Google Scholar 

  37. Pettmann, B., Weibel, M., Sensenbrenner, M., and Labourdette, G. 1985. Purification of two astroglial growth factor from bovine brain. FEBS Lett. 189:102–108.

    PubMed  Google Scholar 

  38. Pettmann, B., Labourdette, G., Devilliers, G., and Sensenbrenner, M. 1981. Effects of brain extracts from chick embryo on the development of astroblasts in culture. Dev. Neurosci. 4:37–45.

    PubMed  Google Scholar 

  39. Sensenbrenner, M., Labourdette, G., Delaunoy, J. P., Pettmann, B., Devilliers, G., Moonen, G., and Bock, E. 1980. Morphological and biochemical differentiation of glial cells in primary culture. Pages 385–395,in Giacobini, E., Vernadakis, A., and Shahar, A. (eds.), Tissue Culture in Neurobiology, Raven Press, New York.

    Google Scholar 

  40. Pettmann, B., Labourdette, G., Weibel, M., and Sensenbrenner, M. 1985. Brain-derived astroglial growth factors Funkt. Biol. Med. 4:243–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Paola S. Timiras.

Cente de Neurochimie du CNRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latzkovits, L., Kátay, L., Torday, C. et al. Sodium and potassium uptake in primary cultures of rat astroglial cells induced by long-term exposure to the basic astroglial growth factor (AGF2). Neurochem Res 14, 1025–1030 (1989). https://doi.org/10.1007/BF00965938

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965938

Key Words

Navigation