Skip to main content
Log in

Pharmacological characterization of the N-methyl-d-aspartate (NMDA) receptor-channel in rodent and dog brain and rat spinal cord using [3H]MK-801 binding

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The biochemical and pharmacological properties of [3H]MK-801 binding to the N-methyl-d-aspartate (NMDA) receptor-channel in homogenates of mouse, guinea pig and dog brain, dog cerebral cortex and rat spinal cord were determined using radioligand binding techniques. Specific [3H]MK-801 binding increased linearily with increasing tissue concentration and in general represented 80–93% of the total binding at 6–8 nM radioligand concentration. [3H]MK-801 interacted with brain and spinal homogenates with high affinity. The dissociation constants (K d ) for all tissues studied were similar ranging between 7.9 and 11.9 nM, whereas the maximum number of binding sites (Bmax) showed a wide, tissue-dependent range (0.1–6.75 pmol/mg protein). The rank order of tissue enrichment was found to be as follows: mouse brain>>dog cerebral cortex>>dog brain>> guinea pig brain>>rat spinal cord. Specific [3H]MK-801 binding in rodent and dog brain, dog cerebral cortex and rat spinal cord exhibited a similar pharmacological profile 9correlation coefficients=0.93–0.99). The rank order of potency of unlabelled compounds competing for [3H]MK-801 binding was: (+)MK-801>(−)MK-801>phencyclidine>(−)cyclazocine>>(+)cyclazocine ≥ ketamine>(+)N-allyl-N-normetazocine>(−)N-allyl-N-normetazocine>(−)pentazocine>(+)pentazocine. NMDA, Kainate, quisqualate and several other compounds failed to inhibit [3H]MK-801 binding at 100 μM. In modulation studies conducted on extensively washed dog cortex membranes, Mg2+ ions stimulated [3H]MK-801 binding at 10 μM-1 mM (EC50=91.5 μM) and then inhibited the binding from 1 mM to 10 mM (IC50=3.1 mM). Glycine stimulated [3H]MK-801 binding at 30 nM-1 mM (EC50=256 nM). In contrast, Zn2+ ions inhibited the binding of [3H]MK-801 binding site exhibited similar pharmacological and biochemical properties. These data appear to suggest that the pharmacological profile of the NMDA-receptor-channel is species and tissue independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anis, N. A., Berry, S. C., Burton, N. R., and Lodge, D. 1983. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl aspartate. Br. J. Pharmac. 79:565–575.

    Google Scholar 

  2. Aram, J., Church, J., Davies, S. N., Lodge, D., and Martin, D. 1986. Comparison of phencyclidine, thienylcyclohexylpiperidine and MK-801 and NMDA antagonists on rat spinal and cortical neurones. Br. J. Pharmac. 89:778P.

    Google Scholar 

  3. Artola, A., and Singer, W. 1987. Long term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652.

    PubMed  Google Scholar 

  4. Birch, P. J., Grossman, C. J., and Hayes, A. G. 1989. Antagonist profile of 6, 7-dichloro-3-hydroxy-2quinoxalinecarboxylate at excitatory amino acid receptors in the neonatal rat spinal cord. Eur. J. Pharmacol. 163:127–131.

    PubMed  Google Scholar 

  5. Church, J., Lodge, D., and Berry, S. C. 1985. Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids. Eur. J. Pharmac. 111:185–190.

    Google Scholar 

  6. Clineschmidt, B. V., Martin, G. E., and Bunting, P. R. 1982. Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev. Res. 2:123–134.

    Google Scholar 

  7. Collingridge, G. 1987. The role of NMDA receptors in learning and memory. Nature, 330:604–605.

    PubMed  Google Scholar 

  8. Cotman, C. W., and Iversen, L. L. 1987. Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci. 10:263–265.

    Google Scholar 

  9. Evans, R. H., Francis, A. A., Jones, A. W., Smith, D. A. S., and Watkins, J. C. 1982. The effects of a series of w-phosphonic α-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. Br. J. Pharmac. 75:65–75.

    Google Scholar 

  10. Foster, A. C., and Fagg, G. E. 1984. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7:103–164.

    Google Scholar 

  11. Foster, A. C., and Wong, E. H. F. 1987. The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-d-aspartate receptor in rat brain. Br. J. Pharmac. 91:403–409.

    Google Scholar 

  12. Gill, R., Foster, A. C., and Woodruff, G. N. 1987. Systemic administration of MK-801 protects against ischaemia-induced hippocampal neurodegeneration in the gerbil. J. Neurosci. 7:3343–3349.

    PubMed  Google Scholar 

  13. Harrison, N. L., and Simmonds, M. A. 1985. Quantitative studies on some antagonists of N-methyl-d-aspartate in slices of rat cerebral cortex. Br. J. Pharmac. 84:381–391.

    Google Scholar 

  14. Huettner, J. E., and Bean, B. P. 1988. Block of N-methyl-D-aspartate activated current by anticonvulsant MK-801: selective binding to open channels. Proc. Natl. Acad. Sci. USA, 85:1307–1311.

    PubMed  Google Scholar 

  15. Javitt, D. C., and Zukin, S. R. 1989. Interaction of [3H]MK-801 with multiple states of the N-methyl-d-aspartate receptor complex of rat brain. Proc. Natl. Acad. Sci. 86:740–744.

    PubMed  Google Scholar 

  16. Kemp, J. A., Priestley, T., and Woodruff, G. N. 1986. MK-801, a novel, orally active anticonvulsant, is a potent, non-competitively N-methyl-D-aspartate-receptor antagonist. Br. J. Pharmacol. 89:535P.

    Google Scholar 

  17. Kemp, J. A., Foster, A. C., and Wong, E. H. F. 1987. Noncompetitive antagonists of excitatory amino acid receptors. Trends Neurosci. 10:294–298.

    Google Scholar 

  18. Kornhuber, J., Mach-Burkhardt, F., Hornhuber, M. E., and Rieder, P. 1989. [3H]MK-801 binding sites in post-mortem human frontal cortex. Eur. J. Pharmacol., 162:483–486.

    PubMed  Google Scholar 

  19. Lodge, D., Anis, N. A., Berry, S. C., and Burton, N. R. 1983. Arylcyclohexylamines selectively reduce excitation of mammalian neurones by aspartate-like amino acid. In Phencyclinine and Related Arylcyclohexylamines: Present and Future Applications. ed. Kamenda J. M., Domino, E. F., and Geneste P., Ann Arbor: NPP Books, 595–616.

    Google Scholar 

  20. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randell, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  21. Maragos, W. F., Chu, D. C. M., Greenamyre, T., Penney, J. B., and Young, A. B. 1986. High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur. J. Pharmacol. 123:173–174.

    PubMed  Google Scholar 

  22. Martin, D., and Lodge, D. 1985. Ketamine acts as a non-competitive N-methyl-d-aspartate antagonist on frog spinal cord in vitro. Neuropharmacol. 24:999–1003.

    Google Scholar 

  23. Mayer, M. L., and Westbrook, G. L. 1987. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28:197–276.

    PubMed  Google Scholar 

  24. Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. 1984. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309:261–263.

    PubMed  Google Scholar 

  25. McKernan R. M., Castro, S., Poat, J. A., and Wong, E. H. F. 1989. Solubilization of the N-methyl-d-aspartate receptor channel complex from rat and porcine brain. J. Neurochem. 52:777–785.

    PubMed  Google Scholar 

  26. Meldrum, B. 1985. Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin. Sci. 68:113–122.

    PubMed  Google Scholar 

  27. Michel, A. D., and Whiting, R. L. 1984. Analysis of ligand binding data using a microcomputer. Br. J. Pharmac. 83:460P.

    Google Scholar 

  28. Munson, P. J., and Rodbard, D. 1980. LIGAND: a versatile computerized approach for the characterization of ligand binding systems. Anal. Biochem. 107:220–239.

    PubMed  Google Scholar 

  29. Patel, S., Chapman, A. G., Millan, M. H., and Meldrum, B. S. 1988. Epilepsy and excitatory amino acid antagonists. In: Excitatory amino acids in health and disease. Ed. D. Lodge, John Willey and Sons, pp. 353–378.

  30. Price, G. W., Ahier, R. G., Middlemiss, D. N., Singh, L., Tricklebank, M. D., and Wong, E. H. F. 1988. In vivo labelling of the NMDA receptor channel complex by [3H]MK-801. Eur. J. Pharmacol., 158:279–282.

    PubMed  Google Scholar 

  31. Proctor, A. W., Wong, E. H. F., Stratmann, G. C., Lowe, S. L., and Bowen, D. M. 1989. Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer's disease. J. Neurochem., 53:698–704.

    PubMed  Google Scholar 

  32. Reynolds, I. J., and Miller, R. J. 1988. Multiple sites for the regulation of the N-methyl-d-aspartate receptor. Mol. Pharmacol. 33:581–584.

    PubMed  Google Scholar 

  33. Reynolds, I. J., Murphy, S. N., and Miller, R. J. 1987.3H-labelled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc. Natl. Acad. Sci. 84:7744–7748.

    PubMed  Google Scholar 

  34. Roberts, P. J., Foster, G. A., Sharif, N. A., and Collins, J. F. 1982. Phosphonate analogues of acidic amino acids: inhibition of excitatory amino acid transmitter binding to cerebellar membranes and of the stimulation of cerebellar cyclic GMP levels. Brain Res. 238:475–479.

    PubMed  Google Scholar 

  35. Schwarcz, R., and Meldrum, B. 1985. Excitatory amino acid antagonists provide a therapeutic approach to neurological disorders. Lancet ii:140–143.

    Google Scholar 

  36. Sharif, N. A. 1985. Multiple synaptic receptors for neuroactive amino acid transmitters—new vistas. Int. Rev. Neurobiol., 26:85–150.

    PubMed  Google Scholar 

  37. Sharif, N. A., and Roberts, P. J. 1980. Problems associated with the binding ofl-glutamic acid to synaptic membranes: methodological aspects. J. Neurochem., 34:779–784.

    PubMed  Google Scholar 

  38. Sharif, N. A., and Roberts, P. J. 1984. Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids. Neurochem. Res., 9:81–101.

    PubMed  Google Scholar 

  39. Watkins, J. C., and Evans, R. H. 1981. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol., 21:165–204.

    PubMed  Google Scholar 

  40. Wong, E. H. F., Kemp, J. A., Priestley, T., Knight, A. R., Woodruff, G. N., and Iversen, L. L. 1986. The anticonvulsant MK-801 is a potent N-methyl-d-aspartate antagonist. Proc. Natl. Acad. Sci., 83:7104–7108.

    PubMed  Google Scholar 

  41. Wong, E. H. F., Knight, A. R., and Woodruff, G. N. 1988. [3H]MK-801 labels a site on the N-methyl-d-aspartate receptor channel complex in rat brain. J. Neurochem., 50:274–281.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, N.A., Nunes, J.L. & Whiting, R.L. Pharmacological characterization of the N-methyl-d-aspartate (NMDA) receptor-channel in rodent and dog brain and rat spinal cord using [3H]MK-801 binding. Neurochem Res 16, 563–569 (1991). https://doi.org/10.1007/BF00974875

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00974875

Key Words

Navigation