Skip to main content
Log in

The neuropeptide bradykinin stimulates phosphoinositide turnover in HSDM1C1 cells: B2-antagonist-sensitive responses and receptor binding studies

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Bradykinin (BK) and its analogs (1 nM-100 μM) stimulated phosphoinositide (PI) turnover in murine fibrosarcoma (HSDM1C1) cells in a concentration-dependent manner. The relative potencies (EC50) were: BK=48±4 nM; Lys-BK=39±3 nM; Met-Lys-BK=158±33 nM; Des-Arg9-BK=2617±598 nM (means±SEM, n=3–14). All these analogs were full agonists and they produced up to 5.4±0.4-fold stimulation of PI turnover at the highest concentration (10–100 μM) of the peptides. In contrast, the analogs [D-Arg0-HYP3-Thienyl5,8-D-Phe7]-BK (HYP3-antagonist), [D-Arg0-HYP3-Thienyl,5,8-D-Phe7]-BK (Thienyl antagonist) and Des-Arg9-Leu8-BK were inactive, as agonists, at 0.1 nM-1 μM in this system. These data suggested that BK-induced PI turnover in these cells was mediated via B2-type of BK receptors. This was confirmed further by the fact that both the B2-selective Hyp3- and Thienyl-antagonists inhibited BK-induced PI turnover with KBS of 369±51 nM and 368±118 nM respectively while the B1-selective antagonist, Des-Arg9-Leu8-BK, was inactive at 1 μM. [3H]BK receptor binding studies revealed two binding sites, one with high affinity (Kd=0.24±0.06 nM; Bmax=1.4±0.4 pmol/g tissue) and the other with low affinity (Kd=18.5±0.95 nM; Bmax=25.1±0.52 pmol/g tissue), on HSDM1C1 cell homogenates. The rank order of affinity of BK analogs at inhibiting specific [3H]BK binding was similar to that found for PI turnover. Taken together, these data have provided evidence for the presence of two B2-type BK binding sites on the HSDM1C1 cells. Based on the affinity parameters, the low-affinity component of [3H]BK binding in HSDM1C1 cells appears to be coupled to the phospholipase C-induced PI turnover mechanism. The high-affinity component has been previously shown to mediate the production of prostaglandins by activation of phospholipase A2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Regoli, D., and Barabe, J. 1980. Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32:1–46.

    Google Scholar 

  2. Regoli, D., Rhaleb, N-E, Dion, S., and Drapeu, G. 1990. New selective bradykinin receptor antagonists and bradykinin B2 receptor characterization. Trends Pharmac. Sci. 11:156–161.

    Google Scholar 

  3. Regoli, D., Drapeau, G., Rovero, P., Dion, S., D'Orelans-Juste, P., and Barabe, J. 1986. The actions of kinin antagonists on B1 and B2 receptor systems. Eur. J. Pharmacol. 123:61–65.

    Google Scholar 

  4. Perry, D. C., and Snyder, S. H. 1984. Identification of bradykinin in mammalian brain. J. Neurochem. 43:1072–1080.

    Google Scholar 

  5. Dray, A., Bettaney, J., Forster, P., and Perkins, M. N. 1988. Activation of a bradykinin receptor in peripheral nerve and spinal cord in the neonatal rat in vitro. Br. J. Pharmacol. 95:1008–1010.

    Google Scholar 

  6. Baccaglini, P. I., and Hogan, P. G. 1983. Some rat sensory neurons in culture express characteristics of differentiated pain sensory cells. Proc. Natl. Acad. Sci. USA 80:594–598.

    Google Scholar 

  7. Miller, R. J. 1987. Bradykinin highlights the role of phospholipid metabolism in the control of nerve excitability. Trends Neurosci. 10:226–228.

    Google Scholar 

  8. Manning, D. C., Snyder, S. H., Kachur, J. F., Miller, R. J., and Field, M. 1982. Bradykinin receptor-mediated chloride secretion in intestinal function. Nature. 299:256–259.

    Google Scholar 

  9. Nasjletti, A., and Malik, K. U. 1981. The renal kallikrein-kinin and prostaglandin systems interaction. Ann. Rev. Physiol. 43:597–609.

    Google Scholar 

  10. Manning, D. C., Vavrek, R., Stewart, J. M., and Snyder, S.H. 1986. Two bradykinin binding sites with picomolar affinities. J. Pharmacol. Exp. Ther. 237:504–512.

    Google Scholar 

  11. Sharif, N. A., and Whiting, R. L. 1991. Identification of B2-bradykinin receptors in guinea pig brain regions, spinal cord and peripheral tissues. Neurochem. Int. 18:89–96.

    Google Scholar 

  12. Braas, K. M., Manning, D. C., Perry, D. C., and Snyder, S. H. 1988. Bradykinin analogues: Differential agonist and antagonist activities suggesting multiple receptors. Br. J. Pharmacol. 94:35.

    Google Scholar 

  13. Steranka, L. R., Manning, D. C., DeHaas, C. J., Ferkany, J. W., Borosky, Connor, J. R., Vavrek, R. J., Stewart, J. M., and Snyder, S. H. 1988. Bradykinin as a pain mediator: Receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc. Natl. Acad. Sci. USA, 85:3245–3249.

    Google Scholar 

  14. Dray, A., Bettaney, J., Forster, P. and Perkins, M. N. 1988. Bradykinin-induced stimulation of afferent fibers is mediated through protein kinase C. Neurosci. Lett. 91:301–307.

    Google Scholar 

  15. Vavrek, R. J., and Stewart, J. M. 1985. Competitive antagonists of bradykinin. Peptides, 6:161–164.

    Google Scholar 

  16. Farmer, S. G., Burch, R. M., Meeker, S. A., and Wilkins, D. E. 1989. Evidence for a pulmonary B3 bradykinin receptor. Mol. Pharmacol. 36:1–8.

    Google Scholar 

  17. Yano, K., Higashida, H., Inoue, R., and Nozawa, Y. 1984. Bradykinin-induced rapid breakdown of phosphatidyl 4,5-bisphosphate in neuroblastoma×glioma hybrid NG108-15 cells. J. Biol. Chem. 259:10201–10207.

    Google Scholar 

  18. Francel, P. C., Miller, R. J., and Dawson, G. 1987. Modulation of bradykinin-induced inositol trisphosphate release in a novel neuroblastoma×dorsal root ganglion sensory neuron cell line. J. Neurochem. 48:1632–1639.

    Google Scholar 

  19. Sharif, N. A., Hunter, J. C., Hill, R. G., and Hughes, J. 1988. Bradykinin-induced accumulation of [3H]inositol-1-phosphate in human embryonic pituitary tumour cells by activation of a B2-receptor. Neurosci. Lett. 86:279–283.

    Google Scholar 

  20. Burgess, G. M., Mullaney, I., McNeill, M., Dunn, P. M., and Rang, H. P. 1989. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci. 9:3314–3325.

    Google Scholar 

  21. Ranson, J. T., Dunne, J. F., and Sharif, N. A. 1993. Flow cytometric selection of responsive subclones and fluorometric analysis of intracellular Ca2+-mobilization. in “Molecular Imaging in Neuroscience: A Practical Approach” (N. A. Sharif, Ed.), Oxford University Press (in Press).

  22. Ransom, J. T., Cherwinski, H. M., Dunne, J. F., and Sharif, N. A. 1991. Flow cytometric analysis of internal calcium mobilization via a B2-bradykinin receptor on a subclone of PC-12 cells. J. Neurochem. 56:983–989.

    Google Scholar 

  23. Francel, P. C., Harris, K., Smith, M., Fishman, M. C., Dawson, G., and Miller, R. J. 1987. Neurochemical characteristics of a novel dorsal root ganglion X neuroblastoma hybrid cell line, F 11. J. Neurochem. 48:1624–1631.

    Google Scholar 

  24. Francel, P. C., Keefer, J. F., and Dawson, G. 1989. Bradykinin analogs antagonize bradykinin-induced second messenger production in a sensory neuron cell line. Mol. Pharmacol. 35:34–38.

    Google Scholar 

  25. Snider, R. M., and Richelson, E. 1984. Bradykinin receptormediated cyclic GMP formation in a nerve cell population (murine neuroblastoma clone N1E-115). J. Neurochem., 43:1749–1754.

    Google Scholar 

  26. Johns, A., Lategan, T. W., Lodge, N. J., Ryan, U. S., van Breemen, C., and Adams, D. J. 1987. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue & Cell, 19:1–13.

    Google Scholar 

  27. Becherer, P. R., Mertz, L. F., and Baenziger, N. L. 1982. Regulation of prostaglandin synthesis mediated by thrombin and B2 bradykinin receptors in a fibrosarcoma cell line. Cell 30:243–251.

    Google Scholar 

  28. McIntyre, T. M., Zimmerman, G. A., Satoh, K., and Prescott, S. M. 1985. Cultured endothelial cells synthesize both plateletactivating factor and prostacyclin in response to histamine, bradykinin and adenosine triphosphate. J. Clin. Invest. 76:271–280.

    Google Scholar 

  29. Ryan, U. S., Johns, A., and Van Breemen, C. 1988. Role of calcium in receptor mediated endothelial cell responses. Chest. 93:105S-109S.

    Google Scholar 

  30. Berridge, M. J., and Irvine, R. F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312:315–321.

    Google Scholar 

  31. Hawthorne, J. N. 1987. Does receptor-linked phosphoinositide metabolism provide messengers mobilizing calcium in nervous tissue? Int. Rev. Neurobiol. 28:241–273.

    Google Scholar 

  32. Conklin, B. R., Burch, R. M., Steranka, L. R., and Axelrod, J. 1988. Distinct bradykinin receptors mediate stimulation of prostaglandin synthesis by endothelial cells and fibroblasts. J. Pharm. Exp. Ther. 244:646–649.

    Google Scholar 

  33. Sharif, N. A., Michel, A. D., and Whiting, R. L. 1989. Bradykinin receptor binding to membranes and whole cells of a fibrosarcoma cell-line (HSDM1C1). FASEB J., 3, Abst. #2893.

  34. Sharif, N. A., and Whiting, R. L. 1990. Stimulation of inositol phosphate production in clonal HSDM1C1 cells by endothelins and sarafotoxin. Biochem. Pharmacol. 40:1928–1931.

    Google Scholar 

  35. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary gland. Biochem. J., 206:587–595.

    Google Scholar 

  36. Michel, A. D., and Whiting, R. L. 1984. Analysis of ligand binding data using a microcomputer. Brit. J. Pharmacol. 83:460P.

    Google Scholar 

  37. Arunlakshana, O., and Schild, H. O. 1959. Some quantitative uses of drug antagonists. Brit J. Pharmacol. Chemother. 14:48–58.

    Google Scholar 

  38. Brown, E., Kendall, D. A., and Nahorski, S. R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortex slices: 1. Receptor characterisation. J. Neurochem. 42:1379–1387.

    Google Scholar 

  39. Innis, R. B., Manning, D. C., Stewart, J. M. and Snyder, S. H. 1981. [3H]Bradykinin receptor binding in mammalian tissue membranes. Proc. Natl. Acad. Sci. USA 78:2630–2635.

    Google Scholar 

  40. Lewis, R. E., Childers, S. R., and Phillips, M. I. 1985. [125]Tyrbradykinin binding in primary rat brain cultures. Brain Res. 346:263–272.

    Google Scholar 

  41. Munson, P. J., and Rodbard, D. 1980. LIGAND: A versatile computerised approach for the characterization of ligand binding systems. Anal. Biochem. 107:220–239.

    Google Scholar 

  42. Rifo, J., Pourrat, M., Vavrek, R. J., Stewart, J. M., and Huidobro-Toro, J. P. 1987. Bradykinin receptor antagonists used to characterize the heterogeneity of bradykinin-induced responses in rat vas deferens. Eur. Pharmacol. 142:305–312.

    Google Scholar 

  43. Schachter, M., Uchida, Y., Longridge, D. J., Labedz, T., Whalley, E. T., Vavrek, R. J., and Stewart, J. M. 1987. New synthetic antagonists of bradykinin. Br. J. Pharmacol. 92:851–855.

    Google Scholar 

  44. Whalley, E. T., Nwator, I. A. A., Stewart, J. M., and Vavrek, R. J. 1987. Analysis of the receptors mediating vascular actions of bradykinin. Naunyn Schmiedebergs Arch. Pharmacol., 336:430–433.

    Google Scholar 

  45. Plevin, R., and Owen, P. J. 1988. Multiple B2 kinin receptors in mammalian tisses. Trends Pharmac. Sci. 9:287–289.

    Google Scholar 

  46. Ransom, R. W., Goodman, C. B., and Young, G. S. 1992. Bradykinin stimulation of phosphoinositide hydrolysis in guinea pig ileum longitudinal muscle. Brit. J. Pharmacol. 105:919–924.

    Google Scholar 

  47. Voyno-Yasemetskaya, T. A., Tkachuk, V. A., Cheknyova, E. G., Panchenko, M. P., Grigorian, G. Y., Vavrek, R. J., Stewart, J. M., and Ryan, U. S. 1989. Guanine nucleotide-dependent, pertussis toxi-insensitive regulation of phosphoinositide turnover by bradykinin in bovine pulmonary artery endothelial cells. FASE J. 3:44–51.

    Google Scholar 

  48. Cholewinski, A. J., Hanley, M. R., and Wilkin, G. P. 1988. A phosphoinositide linked peptide response in astrocytes: Evidence for regional heterogeneity. Neurochem. Res. 13:389–394.

    Google Scholar 

  49. Sung, C-P., Arleth, A. J., Shikano, K., and Berkowitz, B. A. 1988. Characterization and function of bradykinin receptors in vascular endothelial cells. J. Pharm. Exp. Ther. 247:8–13.

    Google Scholar 

  50. Chuang, D., and Dillon-Carter, O. 1988. Characterization of bradykinin induced phosphoinositide turnover in neurohybrid NCB-20 cells. J. Neurochem. 51:505–513.

    Google Scholar 

  51. Fu, T., Okano, Y., and Nazawa, Y. 1988. Bradykinin-induced generation of inositol 1,4,5-trisphosphate in fibroblasts and neuroblastoma cells: Effect of pertussis toxin, extracellular calcium, and down-regulation of protein kinase C. Biochem. Biophys. Res. Comm. 157:1429–1435.

    Google Scholar 

  52. Downward, J., De Gunzburg, J., Riehl, R., and Weinberg, R. 1988. p21ras induced responsiveness of phosphatidylinositol turnover to bradykinin is a receptor number effect. Proc. Natl. Acad. Sci. USA, 85:5774–5778.

    Google Scholar 

  53. Fisher, S. K., and Snider, R. M. 1987. Differential receptor occupancy requirements for muscarinic cholinergic stimulation of inositol lipid hydrolysis in brain and in neuroblastomas. Mol. Pharm. 32:81–90.

    Google Scholar 

  54. Eglen, R. M., Sharif, N. A., and To, Z. P. 1993. Muscarinic M3 receptors mediate total inositol phosphates accumulation in murine HSDM1C1 fibrosarcoma cells. Eur. J. Pharmacol. Mol. Pharmacology section., 244:49–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, N.A., Whiting, R.L. The neuropeptide bradykinin stimulates phosphoinositide turnover in HSDM1C1 cells: B2-antagonist-sensitive responses and receptor binding studies. Neurochem Res 18, 1313–1320 (1993). https://doi.org/10.1007/BF00975053

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00975053

Key Words

Navigation