Skip to main content
Log in

Quantitative alterations of S-100 protein and neuron specific enolase in the rat nervous system after chronic 2,5-hexanedione exposure

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The regional changes in quantities of the glial S-100 protein and the neuron specific enolase in the rat nervous system have been studied after long-term exposure to 2,5-hexanedione. The wet weights of most of the examined nervous tissues were found to be reduced, with an extensive effect seen in the brain stem. Using dot immunobinding assays, the concentrations of S-100 were found to be increased in most of the examined tissues, but unaffected in the brain stem. The total amount of S-100 per tissue was markedly reduced in the brain stem. The content of neuron specific enolase was reduced only in the brain stem. Thus the effects of 2,5-hexanedione on the nervous system varied regionally. The brain stem was severely atrophied with a reduction of neuronal as well as of glial marker proteins. Other brain regions contained increased glial cell marker proteins as signs of progressive astroglial reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamura, Y. 1969. n-Hexane polyneuropathy. Folia Psych. Neurol. Jap. 23:45–57.

    Google Scholar 

  2. Herskowitz, A., Ishii, N., and Schaumburg, H. H. 1971. n-Hexane neuropathy. A syndrome occurring as a result of industrial exposure. New Engl. J. Med. 285:82–85.

    Google Scholar 

  3. Allen, N., Mendell, J. R., Billmaier, D. J., Fontaine, R. E., and O'Neill, J. 1975. Toxic polyneuropathy due to methyl n-butyl ketone. Arch. Neurol. 32:209–218.

    Google Scholar 

  4. Goto, I., Matsumura, M., Inoue, N., Murai, Y., Shida, K., Santa, T., and Kuroiwa, Y. 1974. Toxic polyneuropathy due to glue sniffing. J. Neurol. Neurosurg. Psych. 37:848–853.

    Google Scholar 

  5. Korobkin, R., Asbury, A. K., Sumner, A. J., and Nielsen, S. L. 1975. Glue-sniffing neuropathy. Arch. Neurol. 32:158–162.

    Google Scholar 

  6. DiVincenzo, G. D., Kaplan, C. J., and Dedinas, J. 1976. Characterization of the metabolites of methyl n-butyl ketone, methyl iso-butyl ketone, and methyl ethyl ketone in guinea pig serum and their clearance. Toxicol. Appl. Pharmacol. 36:511–522.

    Google Scholar 

  7. Schaumburg, H. H., and Spencer, P. S. 1976. Degeneration in central and peripheral nervous systems produced by pure n-hexane: An experimental study. Brain 99:183–192.

    Google Scholar 

  8. Spencer, P. S., and Schaumburg, H. H. 1977. Ultrastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibres in experimental central-peripheral distal axonopathies. J. Neuropathol. Exp. Neurol. 36:300–320.

    Google Scholar 

  9. DeCaprio, A. P., Olajos, E. J., and Weber, P. 1982. Covalent binding of a neurotoxic n-hexane metabolite: Conversion of primary amines to substituted pyrrole adducts by 2,5-hexanedione. Toxicol. Appl. Pharmacol. 65:440–450.

    Google Scholar 

  10. Graham, D. G., Anthony, D. C., and Boekelheide, K. 1982. In vitro and in vivo studies of the molecular pathogenesis of n-hexane neuropathy. Neurobehav. Toxicol. Teratol. 4:629–634.

    Google Scholar 

  11. Graham, D. G., Szakal-Quin, G., Priest, J. W., and Anthony, D. C. 1984. In vitro evidence that covalent crosslinking of neurofilaments occurs in γ-diketone neuropathy. Proc. Natl. Acad. Sci. USA 81:4979–4982.

    Google Scholar 

  12. Anthony, D. C., Boekelheide, K., Anderson, C. W., and Graham, D. G. 1983. The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerates pyrrole formation and protein crosslinking. Toxicol. Appl. Pharmacol. 71:372–382.

    Google Scholar 

  13. Karlsson, J.-E., Rosengren, L. E., and Haglid, K. G. 1991. Quantitative and qualitative alterations of neuronal and glial intermediate filaments in rat nervous system after exposure to 2,5-hexanedione. J. Neurochem. 57:1437–1444.

    Google Scholar 

  14. DeCaprio, A. P., and O'Neill, E. A. 1985. Alterations in rat axonal cytoskeletal proteins induced by in vitro and in vivo 2,5-hexanedione exposure. Toxicol. Appl. Pharmacol. 78:235–247.

    Google Scholar 

  15. Carden, M. J., Lee, V. M.-Y., and Schlaepfer, W. W. 1986. 2,5-Hexanedione neuropathy is associated with the covalent cross-linking of neurofilament proteins. Neurochem. Pathol. 5:25–35.

    Google Scholar 

  16. Lapadula, D. M., Irwin, R. D., Suwita, E., and Abou-Donia, M. B. 1986. Cross-linking of neurofilament proteins of rat spinal cord in vivo after administration of 2,5-hexanedione. J. Neurochem. 46:1843–1850.

    Google Scholar 

  17. Lapadula, D. M., Suwita, E., and Abou-Donia, M. B. 1988. Evidence for multiple mechanisms responsible for 2,5-hexanedione-induced neuropathy. Brain Res. 458:123–131.

    Google Scholar 

  18. Monaco, S., Autilio-Gambetti, L., Zabel, D., and Gambetti, P. 1985. Giant axonal neuropathy: Acceleration of neurofilament transport in optic axons. Proc. Natl. Acad. Sci. USA 82:920–924.

    Google Scholar 

  19. Monaco, S., Autilio-Gambetti, L., Lasek, R. J., Katz, M. J., and Gambetti, P. 1989. Experimental increase of neurofilament transport rate: Decreases in neurofilament number and in axon diameter. J. Neuropathol. Exp. Neurol. 48:23–32.

    Google Scholar 

  20. Monaco, S., Jacob, J., Jenich, H., Patton, A., Autilio-Gambetti, L., and Gambetti, P. 1989. Axonal transport of neurofilament is accelerated in peripheral nerve during 2,5-hexanedione intoxication. Brain Res. 491:328–334.

    Google Scholar 

  21. Sabri, M. I., Moore, C. L., and Spencer, P. S. 1979. Studies on the biochemical basis of distal axonopathies. I. Inhibition of glycolysis by neurotoxic hexacarbon compounds. J. Neurochem. 32:683–689.

    Google Scholar 

  22. Sabri, M. I., Ederle, K., Holdsworth, C. E., and Spencer, P. S. 1979. Studies on the biochemical basis of distal axonopathies-II. Specific inhibition of fructose-6-phosphate kinase by 2,5-hexanedione and methyl-butyl ketone. Neurotoxicology 1:285–297.

    Google Scholar 

  23. Howland, R. D., Vyas, I. L., Lowndes, H. E., and Argentieri, T. M. 1980. The etiology of toxic peripheral neuropathies: In vitro effects of acrylamide and 2,5-hexanedione on brain enolase and other glycolytic enzymes. Brain Res. 202:131–142.

    Google Scholar 

  24. Graham, D. G., and Abou-Donia, M. B. 1980. Studies of the molecular pathogenesis of hexane neuropathy. I. Evaluation of the inhibition of glyceraldehyd-3-phosphate dehydrogenase by 2,5-hexanedione. J. Toxicol. Environ. Health 6:621–631.

    Google Scholar 

  25. Rider, C., and Taylor, C. 1975. Evidence for a new form of enolase in rat brain. Biochem. Biophys. Res. Commun. 66:814–819.

    Google Scholar 

  26. Marangos, P. J., Schmechel, D., Zis, A. P., and Goodwin, F. K. 1979. The existence and neurobiological significance of neuronal and glial forms of the glycolytic enzyme enolase. Biol. Psych. 14:563–579.

    Google Scholar 

  27. Moore, B. 1965. A soluble protein characteristics of the nervous system. Biochem. Biophys. Res. Commun. 19:739–744.

    Google Scholar 

  28. Isobe, T., Ishioka, N., Masuda, T., Takahashi, Y., Ganno, S., and Okuyama, T. 1983. A rapid separation of S-100 subunits by high performance liquid chromatography: The subunit compositions of S-100b proteins. Biochem. Int. 6:419–426.

    Google Scholar 

  29. Isobe, T., Takahashi, Y., and Okuyama T. 1984. S-100a0 protein is present in neurons of central and peripheral nervous system. J. Neurochem. 13:1494–1496.

    Google Scholar 

  30. Haglid, K. G., Kjellstrand, P., Rosengren, L. E., Wronski, A., and Briving, C. 1980. Effects of trichloroethylene inhalation on proteins of the gerbil brain. Arch. Toxicol. 43:187–199.

    Google Scholar 

  31. Rosengren, L. E., Aurell, A., Kjellstrand, P., and Haglid, K. G. 1985. Astrogliosis in the cerebral cortex of gerbils after long-term exposure to 1,1,1-trichloroethane. Scand. J. Work Environ. Health 11:447–455.

    Google Scholar 

  32. Rosengren, L. E., Kjellstrand, P., Aurell, A., and Haglid, K. G. 1986. Irreversible effects of dichloromethane on the brain after long term exposure: A quantitative study of DNA and the glial cell marker proteins S-100 and GFA. Brit. J. Ind. Med. 43:291–299.

    Google Scholar 

  33. Rosengren, L. E., Kjellstrand, P., Aurell, A., and Haglid, K. G. 1986. Irreversible effects of xylene on the brain after long term exposure: A quantitative study of DNA and the glial cell marker proteins S-100 and GFA. Neurotoxicology 7:121–136.

    Google Scholar 

  34. Rosengren, L. E., Kjellstrand, P., and Haglid, K. G. 1986. Tetrachloroethylene: Levels of DNA and S-100 in the gerbil CNS after chronic exposure. Neurobehav. Toxicol. Teratol. 8:201–206.

    Google Scholar 

  35. Rosengren, L. E., and Haglid, K. G. 1989. Long term neurotoxicity of styrene. A quantitative study of glial fibrillary acidic protein (GFA) and S-100. Brit. J. Ind. Med. 46:316–320.

    Google Scholar 

  36. Wang, S., Lees, G. J., Rosengren, L. E., Karlsson, J.-E., Stigbrand, T., Hamberger, A., and Haglid, K. G. 1991. The effect of an N-methyl-D-aspartate lesion in the hippocampus on glial and neuronal marker proteins. Brain Res. 541:334–341.

    Google Scholar 

  37. Huang, J., Kato, K., Shibata, E., Sugimura, K., Hisanaga, N., Ono, Y., and Takeuchi, Y. 1989. Effects of chronic n-hexane exposure on nervous system-specific and muscle-specific proteins. Arch. Toxicol. 63:381–385.

    Google Scholar 

  38. Kindblom, L.-G., Lodding, P., Rosengren, L., Baudier, J., and Haglid, K. 1984. S-100 protein in melanocytic tumors. Acta Microbiol. Immunol. Scand. 92:219–230.

    Google Scholar 

  39. Grasso, A., Haglid, K. G., Hansson, H.-A., Persson, L., and Rönnbäck, L. 1977. Localization of 14-3-2 protein in the rat brain by immunoelectron microscopy. Brain Res. 122:582–585.

    Google Scholar 

  40. Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose shoets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    Google Scholar 

  41. Redinbaugh, M. G. and Turley, R. B. 1986. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Anal. Biochem. 153:267–271.

    Google Scholar 

  42. Wang, S., Rosengren, L. E., Karlsson, J.-E., Stigbrand, T., and Haglid, K. G. 1990. A simple quantitative dot-immunobinding assay for glial and neuronal marker proteins in SDS-solubilized brain tissue extracts. J. Neurosci. Meth. 33:219–227.

    Google Scholar 

  43. Anthony, D. C., Boekelheide, K., and Graham, D. G. 1983. The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. I. Accelerated clinical neuropathy is accompanied by more proximal axonal swellings. Toxicol. Appl. Pharmacol. 71:362–371.

    Google Scholar 

  44. Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V. 1970. The cellular localization of the two brain specific proteins, S-100 and 14-3-2. Brain Res. 18:25–34.

    Google Scholar 

  45. Ando, M., Miwa, M., Kato, K., and Nagata, Y. 1984. Effects of denervation and axotomy on nervous system-specific protein, ornithine decarboxylase, and other enzyme activities in the superior cervical sympathetic ganglion of the rat. J. Neurochem. 42:94–100.

    Google Scholar 

  46. Durham, H. D., Salera, I., and Dahrouge, S. 1989. Evidence that formation of an intermediate filament-protein complex plays a primary role in aggregation of neurofilaments, glial fibrillary acidic protein (GFAP)-filaments and vimentin-filaments by 2,5-hexandione. J. Neuropathol. Exp. Neurol. 48:197–211.

    Google Scholar 

  47. DeCaprio, A. P. 1986. Mechanisms of in vitro pyrrole adduct autooxidation in 2,5-hexanedione-treated protein. Mol. Pharmacol. 30:452–458.

    Google Scholar 

  48. Powell, H. C., Koch, T., Garrett, R., and Lampert, P. 1978. Schwann cell abnormalities in 2,5-hexanedione neuropathy. J. Neurocytol. 7:517–528.

    Google Scholar 

  49. Kyrklund, T., Kjellstrand, P., and Haglid, K. G. 1986. Fatty acid changes in rat brain ethanolamine phosphoglycerides during and following chronic exposure to trichloroethylene. Toxicol. Appl. Pharmacol. 85:145–153.

    Google Scholar 

  50. Marangos, P. S., Schmechel, D., Parma, A. M., Clark, R. L., and Goodwin, F. K. 1979. Measurement of neuron-specific (NSE) and non-neuronal (NNE) isoenzymes of enolase in rat monkey and human nervous tissue. J. Neurochem. 33:319–329.

    Google Scholar 

  51. Lynch, J. J., Merigan, W. H., and Eskin, T. A. 1989. Subchronic dosing of macaques with 2,5-hexanedione causes long-lasting motor dysfunction but reversible visual loss. Toxicol. Appl. Pharmacol. 98:166–180.

    Google Scholar 

  52. Yamamoto, C., and Kawana, E. 1991. Immunohistochemical detection of NSE and S-100 protein in the thalamic VB nucleus after ablation of somatosensory cortex in the rat. Okajimas Folia Anat. Jpn. 67:417–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, J.E., Wang, S., Rosengren, L.E. et al. Quantitative alterations of S-100 protein and neuron specific enolase in the rat nervous system after chronic 2,5-hexanedione exposure. Neurochem Res 18, 203–208 (1993). https://doi.org/10.1007/BF01474685

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01474685

Key Words

Navigation