Skip to main content
Log in

High ammonia diet: Its effect on the glial fibrillary acidic protein (GFAP)

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of a recent hyperammonemic model, consisting of a high ammonia diet for 3, 7, 15, 45, and 90 days, on glial fibrillary acidic protein (GFAP) in the rat spinal cord and on blood ammonia levels has been studied. The high ammonia diet was prepared by mixing a standard diet with ammonium acetate (20% wt/wt); in addition, 5 mM of ammonium acetate was added to the water supply. GFAP contents were determined by means of immunoblotting analysis. The results demonstrated that this high ammonia diet model neither induces significant changes in GFAP immunoreactivity, nor modifies total protein concentration, and only induces significant blood hyperammonemic levels in the first days of treatment. An adaptative response to the diet is suggested and discussed to explain these results. A relation between ammonia and GFAP expression is suggested because transient hyperammonemia induces transient, although no significant, changes on GFAP expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, A. J. L., and Plum, F. 1987. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67:440–519.

    PubMed  Google Scholar 

  2. Schenker, S. 1989. Hepatic encephalopathy: the present and future. Pages, 3–24,in Butterworth, R. F., and Pomier, G. (eds.), Hepatic encephalopathy. Pathophysiology and treatment, Humana, Clifton, NJ.

    Google Scholar 

  3. Basile, A. S., Jones, E. A., and Skolnick, P. 1991. The pathogenesis and treatment of hepatic encephalopathy: evidence for the involvement of benzodiazepine receptor ligands. Pharmacol. Rev. 43:27–71.

    PubMed  Google Scholar 

  4. Butterworth, R. F., Giguère, J. F., Michaud, J., Lavoie, J., and Pomier, G. 1987. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem. Pathol. 6:1–12.

    Google Scholar 

  5. Jessy, J., Mans, A. M., DeJoseph, M. R., and Hawkins, R. A. 1990. Hyperammonaemia causes many of the changes found after portacaval shunting. Biochem. J. 272:311–317.

    PubMed  Google Scholar 

  6. Batshaw, M. L., and Monahan, P. S. 1987. Treatment of urea cycle disorders. Enzyme 38:242–250.

    PubMed  Google Scholar 

  7. Diemer, N. H., and Laursen, H. 1977. Glial cell reactions in rats with hyperammonemia induced by urease or porto-caval anastomosis. Acta Anat. Scand. 55:425–442.

    Google Scholar 

  8. Batshaw, M. L., Hyman, S. L., Mellits, E. D., Thomas, G. H., DeMuro, R., and Coyle, J. T. 1986. Behavioural and neurotransmitter changes in urease-infused rats: a model of congenital hyperammonemia. Pediatr. Res. 20:1310–1315.

    PubMed  Google Scholar 

  9. Gutiérrez, J. A., and Norenberg, M. D. 1975. Alzheimer II astrocytosis following methionine sulfoximine. Arch. Neurol. 32:123–126.

    PubMed  Google Scholar 

  10. Yamamoto, T., Iwasaki, Y., Sato, Y., Yamamoto, H., and Konno, H. 1989. Astrocyte pathology of methionine sulfoximine-induced encephalopathy. Acta Neuropathol. 77:357–368.

    PubMed  Google Scholar 

  11. Hawkins, R. A., and Jessy, J. 1991. Hyperammonaemia does not impair brain function in the absence of net glutamine synthesis. Biochem. J. 277:697–703.

    PubMed  Google Scholar 

  12. Takahashi, H., Koehler, R. C., Brusilow, S. W., and Traystman, R. J. 1991. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 261:H825-H829.

    PubMed  Google Scholar 

  13. Azorín, I., Miñana, M. D., Felipo, V., and Grisolía, S. 1989. A simple animal model of hyperammonemia. Hepatology 10:311–314.

    PubMed  Google Scholar 

  14. Norenberg, M. D. 1987. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6:13–33.

    PubMed  Google Scholar 

  15. O'Callaghan, J. P. 1991. Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed. Environ. Sci. 4:197–206.

    PubMed  Google Scholar 

  16. O'Callaghan, J. P. 1992. Assessment of neurotoxicity using assays of neuron- and glia-localized proteins: chronology and critique. Pages 83–100,in Tilson, H., and Mitchell, C. (eds.), Neurotoxicology, Raven Press, New York.

    Google Scholar 

  17. Zamora, A. J., Cavanagh, J. B., and Kyu, M. H. 1973. Ultrastructural responses of the astrocytes to porto-caval anastomosis in the rat. J. Neurol. Sci. 18:25–45.

    PubMed  Google Scholar 

  18. Norenberg, M. D., and Lapham, L. W. 1974. The astrocyte response in experimental portal-systemic encephalopathy: an electron microscopic study. J. Neuropathol. Exp. Neurol. 33:422–435.

    PubMed  Google Scholar 

  19. Sobel, R. A., DeArmond, S. J., Forno, L. S., and Eng, L. F. 1981. Glial fibrillary acidic protein in hepatic encephalopathy. J. Neuropathol. Exp. Neurol. 40:625–632.

    PubMed  Google Scholar 

  20. Kretzschmar, H. A., DeArmond, S. J., and Forno, L. S. 1985. Measurement of GFAP in hepatic encephalopathy by ELISA and transblots. J. Neuropathol. Exp. Neurol. 44:459–471.

    PubMed  Google Scholar 

  21. Kimura, T., and Budka, H. 1986. Glial fibrillary acidic protein and S-100 protein in human hepatic encephalopathy: immunocytochemical demonstration of dissociation of two glia associated proteins. Acta Neuropathol. 70:17–21.

    PubMed  Google Scholar 

  22. Bodega, G., Suárez, I., Rubio, M., Arilla, E., and Fernández, B. 1991. Heterogeneous astroglial response in the rat spinal cord to long-term portacaval shunt. An immunohistochemical study. Glia 4:400–407.

    PubMed  Google Scholar 

  23. Suárez, I., Bodega, G., Arilla, E., Rubio, M., Villalba, R. M., and Fernández, B. 1992. Different response of astrocytes and Bergmann glial cells to portacaval shunt. An immunohistochemical study in the rat cerebellum. Glia 6:172–179.

    PubMed  Google Scholar 

  24. Pearson, D. 1973. Laboratory techniques in food analysis. Butterworth and Co. Ltd., London.

    Google Scholar 

  25. Meikle, A., and Martin, A. H. 1981. A rapid method for removal of the spinal cord. Stain Technol. 56:235–237.

    PubMed  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  27. Kosenko, E., Felipo, V., Miñana, M. D., Grau, E., and Grisolía, S. 1991. Ammonium ingestion prevents depletion of hepatic energy metabolites induced by acute ammonium intoxications. Arch. Biochem. Biophys. 290:484–488.

    PubMed  Google Scholar 

  28. Girard, G., and Butterworth, R. F. 1992. Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle. Dig. Dis. Sci. 37:1121–1126.

    PubMed  Google Scholar 

  29. Bodega, G., Suárez, I., Rubio, M., Villalba, R. M., and Fernández, B. 1992. Hyperammonemia induces transient GFAP immunoreactivity changes in the goldfish spinal cord (Carassius auratus L.). Neurosci. Res. 13:217–225.

    PubMed  Google Scholar 

  30. Wasterlain, C. G., Lockwood, A. H., and Conn, M. 1973. Chronic inhibition of brain protein synthesis after portocaval shunting. Neurology 28:233–238.

    Google Scholar 

  31. Schott, K., Poetter, V., and Neuhoff, V. 1984. Ammonia inhibits protein synthesis in slices from young rat brain. J. Neurochem. 42:644–646.

    PubMed  Google Scholar 

  32. Felipo, V., Miñana, M. D., Azorín, I., and Grisolía, S. 1988. Induction of rat brain tubulin following ammonium ingestion. J. Neurochem. 51:1041–1045.

    PubMed  Google Scholar 

  33. Norenberg, M. D., Neary, J. T., Norenberg, L. O., and McCarthy, M. 1990. Ammonia induced decrease in glial fibrillary acidic protein in cultured astrocytes. J. Neuropathol. Exp. Neurol. 33:422–435.

    Google Scholar 

  34. Miñana, M. D., Felipo, V., Quel, A., Pallardo, F., and Grisolía, S. 1989. Selective regional distribution of tubulin induced by hyperammonemia. Neurochem. Res. 14:1241–1243.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodega, G., Suárez, I., Boyano, M.C. et al. High ammonia diet: Its effect on the glial fibrillary acidic protein (GFAP). Neurochem Res 18, 971–975 (1993). https://doi.org/10.1007/BF00966755

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966755

Key Words

Navigation