Skip to main content
Log in

Effect of Osmolality and myo-Inositol Deprivation on the Transport Properties of myo-Inositol in Primary Astrocyte Cultures

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

myo-Inositol uptake measured in primary astrocyte cultures was saturable in the presence of Na+ with a Km of 13–18 μM and a Vmax of 9.4 nmoles/mg protein/hour in myo-inositol-fed cells, indicating a high affinity transport system. In myo-inositol-deprived cells, Km was about 53 μM with a Vmax of 13.2 nmoles/mg protein/hour. Decreasing osmolality decreased the Vmax to about 1.9 nmoles/mg protein/hour whereas increasing osmolality increased Vmax about 5-fold, while Kms were essentially unchanged in myo-inositol fed cells. In cells deprived of myo-inositol, Vmax decreased in hypotonic medium and increased in hypertonic medium almost 10-fold, but with more than a doubling of the Km regardless of the osmolality. Glucose (25 mM) inhibited myo-inositol uptake 51% whereas the other hexoses used inhibited uptake much less. Our findings indicate that myo-inositol uptake in astrocytes occurs through an efficient carrier-mediated Na+-dependent co-transport system that is different from that of glucose and its kinetic properties are affected by myo-inositol availability and osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Berridge, M. J. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220:345–360.

    Google Scholar 

  2. Michell, R. H. 1975. Inositol phospholipids and cell-surface receptor function. Biochim. Biophys. Acta 415:81–147.

    Google Scholar 

  3. Berridge, M. J., and Irvine, R. F. 1984. Inositol trisphosphate, a novel second messenger in cellular transduction. Nature 312: 315–321.

    Google Scholar 

  4. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698.

    Google Scholar 

  5. Downes, C. P. 1989. The cellular functions of myo-inositol. Biochem. Soc. Trans. 17:259–268.

    Google Scholar 

  6. Isaacks, R. E., Bender, A. S., Kim, C. Y., Prieto, N. M., and Norenberg, M. D. 1994. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem. Res. 19:331–338.

    Google Scholar 

  7. Strange, K., Morrison, R., Heilig, C. W., Dipietro, S., Gullans, S. R. 1991. Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am. J. Physiol. 260: C784-C790.

    Google Scholar 

  8. Strange, K., and Morrison, R. 1992. Volume regulation during recovery from chronic hypertonicity in brain glial cells. Am. J. Physiol. 263:C412-C419.

    Google Scholar 

  9. Strange, K., Emma, F., Paredes, A., and Morrison, R. 1994. Osmoregulatory changes in myo-inositol content and Na+/myo-inositol cotransport in rat cortical astrocytes. Glia 12:35–43.

    Google Scholar 

  10. Spector, R., and Lorenzo, A. V. 1975. The origin of myo-inositol in brain, cerebrospinal fluid and choroid plexus. J. Neurochem. 25:353–354.

    Google Scholar 

  11. Wong, Y-H. H., Kalmbach, S. J., Hartman, B. K., and Sherman, W. R. 1987. Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phospate synthase to be localized in the vasculature of brain. J. Neurochem. 48:1434–1442.

    Google Scholar 

  12. Biden, T. J., and Wollheim, C. B. 1986. Active transport of myo-inositol in rat pancreatic islets. Biochem. J. 236:889–893.

    Google Scholar 

  13. Isaacks, R. E., Lai, L. L., Kim, C. Y., Goldman, P. H., Kim, H. D. 1989. Studies on avian erythrocyte metabolism. XVII. Kinetics and transport properties of myo-inositol in chicken reticulocytes. Arch. Biochem. Biophys. 274:564–573.

    Google Scholar 

  14. Wiesinger, H. 1991. myo-Inositol transport in mouse astroglia-rich primary cultures. J. Neurochem. 56:1698–1704.

    Google Scholar 

  15. Warfield, A., Hwang, S. M., and Segal, S. 1978. On the uptake of inositol by rat brain synaptosomes. J. Neurochem. 31:957–960.

    Google Scholar 

  16. Goresky, C. A., and Nadeau, B. E. 1974. Uptake of materials by the intact liver. The exchange of glucose across the cell membranes. J. Clin. Invest. 53:634–646.

    Google Scholar 

  17. Prpic, V., Blackman, P. F., and Exton, J. H. 1982. myo-Inositol uptake and metabolism in isolated rat liver cells. J. Biol. Chem. 257:11315–11322.

    Google Scholar 

  18. Cotlier, E. 1970. myo-Inositol: Active transport by the crystalline lens. Invest. Ophthalmol. 9:681–691.

    Google Scholar 

  19. Gillon, K. R. W., and Hawthorne, J. N. 1983. Transport of myo-inositol into endoneurial preparations of sciatic nerve from normal and streptozotocin-diabetic rats. Biochem. J. 210:775–781.

    Google Scholar 

  20. Greene, D. A., and Lattimer, S. A. 1982. Sodium-and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. J. Clin. Invest. 70:1009–1018.

    Google Scholar 

  21. Reddy, V. N., Varma, S. D., and Chakrapani, B. 1970. Intraocular transport of myo-inositol. I. Accumulation in the rabbit ciliary body. Invest. Opthalmol. 9:785–793.

    Google Scholar 

  22. Elbrink, J., and Bihler, I. 1972. Characteristic of the membrane transport of sugars in the lens of the eye. Biochem. Biophys. Acta 282:337–351.

    Google Scholar 

  23. Greene, D. A., Winegrad, A. I., Carpentier, J. L., Brown, M. J., Fukuma, M., and Orci, L. 1979. Rabbit sciatic nerve fascile and endoneurial preparations for in vitro studies of peripheral nerve glucose metabolism. J. Neurochem. 33:1007–1018.

    Google Scholar 

  24. Booher, J., and Sensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat, and human brain in flask cultures. Neurobiology 2:97–105.

    Google Scholar 

  25. Gregorios, J. B., Mozes, L. W., Norenberg, L. O. B., and Norenberg, M. D. 1985. Morphological effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44:397–403.

    Google Scholar 

  26. Stahl, B., Wiesinger, H., and Hamprecht, B. 1989. Characteristics of sorbitol uptake in rat glial primary cultures. J. Neurochem. 53:665–671.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Haneda, M., Kikkawa, R., Arimura, T., Ebata, K., Togawa, M., Maeda, S., Sawada, T., Horide, N., and Shigeta, Y. 1990. Glucose inhibits myo-inositol uptake and reduces myo-inositol content in cultured rat mesangial cells. Metabolism 39:40–45.

    Google Scholar 

  29. Batty, I. H., Michie, A., Fennel, M., and Downes, C. P. 1993. The characteristics, capacity and receptor regulation of inositol uptake in 1321N1 astrocytoma cells. Biochem. J. 294:49–55.

    Google Scholar 

  30. Guzman, N. J., and Crews, F. T. 1992. Regulation of inositol transport by glucose and protein kinase C in mesangial cells. Kidney Internat. 42:33–40.

    Google Scholar 

  31. Veis, J. H., Molitoris, B. A., Teitelbaum, I., Mansour, J. A., and Berl, T. 1991. myo-Inositol uptake by rat cultured inner medullary collecting tubule cells: effect of osmolality. Am. J. Physiol. 260:F619-F625.

    Google Scholar 

  32. Paredes, A., McManus, M., Kwon, H. M., and Strange, K. 1992. Osmoregulation of Na+-inositol cotransporter activity and mRNA levels in brain glial cells. Am. J. Physiol. 263:(Cell Physiol. 32) C1282-C1288.

    Google Scholar 

  33. Nakanishi, T., Turner, R. J., and Burg, M. B. 1989. Osmoregulatory changes in myo-inositol transport by renal cells. Proc. Natl. Acad Sci (USA) 86:6002–6006.

    Google Scholar 

  34. Rubin, L. J., and Hale, C. C. 1993. Characterization of a Mgdependent, Na-inositol co-transport process in cardiac sarcolemmal vesicles. J. Mol. Cell Cardiol. 25:721–731.

    Google Scholar 

  35. Kwon, H. M., Yamuchi, A., Uchida, S., Robey, R. B., Garcia-Perez, A., Burg, M. B., and Handler, J. S. 1991. Renal Na-myo-inositol cotransporter mRNA expression in Xenopus oocytes: regulation by hypertonicity. Am. J. Physiol. 260:(Renal Fluid Electrolyte Physiol. 29) F258-F263.

    Google Scholar 

  36. Fruen, B. R., and Lester, B. R. 1990. Down's syndrome fibroblasts exhibit enhanced inositol uptake. Biochem. J. 270:119–123.

    Google Scholar 

  37. Whitesell, R. R., and Abumrad, N. A. 1985. Increased affinity predominates in insulin stimulation of glucose transport in the adipocyte. J. Biol. Chem. 260:2894–2899.

    Google Scholar 

  38. Martz, A., Mookerjee, B. K., and Jung, C. Y. 1986. Insulin and phorbol esters affect the maximum velocity rather than the half-saturation constant of 3-O-methylglucose transport in rat adipocytes. J. Biol. Chem. 261:13606–13609.

    Google Scholar 

  39. Suzuki, K. 1988. Reassessment of the translocation hypothesis by kinetic studies on hexose transport in isolated rat adipocytes. J. Biol. Chem. 263:12247–12252.

    Google Scholar 

  40. Tildon, J. T., McKenna, M. C., Stevenson, J., and Couto, R. 1993. Transport of L-lactate by cultured rat brain astrocytes. Neurochem. Res. 18:177–184.

    Google Scholar 

  41. Tildon, J. T., McKenna, M. C., and Stevenson, J. H., Jr. 1994. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes. Neurochem. Res. 19:1237–1242.

    Google Scholar 

  42. Palmano, K. P., Whiting, P. H., and Hawthorne, J. N. 1977. Free and lipid myo-inositol in tissues from rat with acute and less severe streptozotocin-induced diabetes. Biochem. J. 167:229–235.

    Google Scholar 

  43. Krupka, R. M., and Deves, R. 1981. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes. J. Biol. Chem. 256: 5410–5416.

    Google Scholar 

  44. Griffin, J. F., Rampal, A. L., and Jung, C. Y. 1982. Inhibition of glucose transport in human erythrocytes by cytochalasins: A model based on diffraction studies. Proc. Natl. Acad Sci USA 79:3759–3763.

    Google Scholar 

  45. Khatami, M., and Rockey, J. H. 1988. Regulation of uptake of inositol by glucose in cultured retinal pigment epithelial cells. Biochem. Cell Biol. 66:951–957.

    Google Scholar 

  46. Finegold, D., Lattimer, S. A., Nolle, S., Bernstein, M., and Greene, D. A. 1983. Polyol pathway activity and myo-inositol metabolism. A suggested relationship in the pathogenesis of diabetic neuropathy. Diabetes 32:988–992.

    Google Scholar 

  47. Kreis, R., Ross, B. D., Farrow, N. A., and Ackerman, Z. 1992. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182:19–27.

    Google Scholar 

  48. Miller, B. L., Moats, R. A., Shonk, T., Ernst, T., Woolley, S., and Ross, B. D. 1993. Alzeheimer disease: depiction of cerebral myo-inositol with proton MR spectroscopy. Radiology 187: 433–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacks, R.E., Bender, A.S., Kim, C.Y. et al. Effect of Osmolality and myo-Inositol Deprivation on the Transport Properties of myo-Inositol in Primary Astrocyte Cultures. Neurochem Res 22, 1461–1469 (1997). https://doi.org/10.1023/A:1021950311308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021950311308

Navigation