Skip to main content
Log in

Alteration of Enzymatic Activities Implicating Neuronal Degeneration in the Spinal Cord of the Motor Neuron Degeneration Mouse During Postnatal Development

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress is suggested as a significant causative factor forpathogenesis of neuronal degeneration on spinal cord of human ALS. Wemeasured some enzymic activities implicating neuronal degenerationprocess, such as cytochrome c oxidase (CO), superoxidedismutase (SOD), and transglutaminase (TG) in spinalcord of an animal model of ALS, motor neuron degeneration(Mnd) mouse, a mutant that exhibits progressivedegeneration of lower spinal neurons during developmental growth, andcompared them with age-matched control C57BL/6 mice. CO activity inMnd spinal cord decreased during early postnatal period, whileSOD activity reduced in later stage. In Mnd tissue, TG activityin lumbar cord was increasing during early stage, but tended to declinein later period gradually. These biochemical alterations became evidentprior to the appearance of clinical motor dysfunction which wereobserved in later stages of development in Mnd spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Caroscio, J. T., Mulvibill, M. M., Sterling, R., and Abrams, B., 1987. Amyotrophic lateral sclerosis: its natural history, Neurol. Clin. 5:1-8.

    Google Scholar 

  2. Gsell, W., Conrad, R., Hicketheir, M., Sofic, E., Fralich, L., Wichart, I., Jellinger, K., Mall, G., Rausmayer, G., Beckman, H., and Riederer, P., 1995. Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J. Neurochem. 64:1216-1223.

    PubMed  Google Scholar 

  3. Przedborski, S., Jackson-Lewis, V., Kostic, V., Carlson, E., Epstein, C. J., and Cadet, J. L., 1992. Superoxide sidmutase, catalase, and glutathion peroxidase activities in copper/zinc-superoxide dismutase transgenic mice, J. Neurochem. 62:384-387.

    Google Scholar 

  4. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, Jr., Deng, H-X., Rahmani, Z., Krizus, A., McKenna-Ysek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R., Halperin, J. J., Herzfeld, B., Van der Bergh, R., Hung, W., Bird, T., Deng, G., Mulder, D. W., Smyth, C., Laing, N. G., Soriano, E., Pericak-Vance Haines, J., Rouleau, G. A., Gusella, J. S., Horocitz, H. R., and Brown, R. H. Jr., 1993. Mutation in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59-62.

    PubMed  Google Scholar 

  5. Gurney, M. E., Pu, H., Chiu, A. Y., DalCanto, M. C., Polchow, C. Y., Alexander, D. D., Caliendo, J., Heitati, A., Kwon, Y. W., Deng, H-X., Chen, W., Zhai, P., Suftt, R. L., and Siddique, T., 1994. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation, Science 264:1772-1775.

    PubMed  Google Scholar 

  6. Richter, C., Park, J-W., and Ames, B. M., 1988. Neuronal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Nat. Acad. Sci. USA. 85:6465-6467.

    PubMed  Google Scholar 

  7. Fujita, K., Yamauchi, K., Shibayama, K., Ando, M., Honda, M., and Nagata, Y., 1996. Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cord of patients with amyotrophic lateral sclerosis, J. Neurosci. Res. 45:276-281.

    PubMed  Google Scholar 

  8. Greenkerg, C. S., Birchbichler, P. J., and Rice, G. H., 1991. Transglutaminase: multifunctional cross-linking enzymes that stabilize tissues, FEBS Lett., 5:3071-3077.

    Google Scholar 

  9. Ando, M., Kunii, S., Tatematsu, T., and Nagata, Y., 1993. Rapid and transient alterations in transglutaminase activity in rat superior cervical ganglion following denervation or axotomy, Neurosci. Res. 17:47-52.

    PubMed  Google Scholar 

  10. Fujita, K., Ando, M., Yamauchi, M., Nagata, Y., and Honda, M., 1995. Alteration of transglutaminase activity in rat and human spinal cord after neuronal degeneration, Neurochem. Res. 20:1195-1201.

    PubMed  Google Scholar 

  11. Messer, A., Strominger, N. L., and Mazurkiewicz, J. E., 1987. Histopathology of the late-onset motor neuron degeneration (Mnd) mutant in the mouse, J. Neurogenet. 4:201-213.

    PubMed  Google Scholar 

  12. Pardo, C. A., Rabin, R. A., Palmer, D. W., and Price, D. L., 1994. Accumulation of the adenosine triphosphate synthase subunit in the Mnd mutant mouse, a model for neuronal ceroid lipofuscinosis, Am. J. Pathol., 144:829-835.

    PubMed  Google Scholar 

  13. Messer, A., Plummer, J., Maskin, P., Coffin, J. M., and Frankel, W. N., 1992. Mapping of the motor neuron degeneration (Mnd) gene, a mouse model of amyotrophic lateral sclerosis (ALS), Genemics 18:797-802.

    Google Scholar 

  14. Callahan, L. M., Esther, P. S., Nylen, E. L., Messer, A., and Mazurkiewicz, J. E., 1991. Neurofilament distribution isolated in the Mnd (motor neuron degeneration) mouse, J. Neuropathol. Exp. Neurol. 50:491-504.

    PubMed  Google Scholar 

  15. Wharton, D. C., and Tzagoloff, A., 1976. Cytochrome oxidase from beef heart mitochondria, Methods Enzymol. 10:245-250.

    Google Scholar 

  16. Misra, N. P., and Fridovich, I., 1972. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 249:3170-3175.

    Google Scholar 

  17. Lorand, L., Campbell-Wikes, L. K., and Cooperstein, L., 1972. A filter paper assay for transamidating enzymes using radioactive amine substrates, Analy. Biochem. 50:623-631.

    Google Scholar 

  18. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:242-252.

    Google Scholar 

  19. Klüver, H., and Barrera, E., 1954. On the use of azapolphin derivatives (pathalocyanines) in staining nervous tissue, J. Physiol., 37:631-633.

    Google Scholar 

  20. Almeida, A., Allen, K. L., Bates, T. E., and Clark, J. B., 1995. Effect of reperfusion following cerebral ischemia on the activity of mitochondrial respiratory chain in the gerbil brain, J. Neurochem. 65:1698-1703.

    PubMed  Google Scholar 

  21. Bowling, A. C., Mutisya, E. M., Walker, L. C., Price, D. L., Cork, L. C., and Beal, M. F., 1993. Age-dependent impairment of mitochondrial function in primate brain, J. Neurochem. 60:1964-1967.

    PubMed  Google Scholar 

  22. Mugge, H. P., Elwell, J. H., Peterson, T. E., and Harrison, D. G., 1991. Release of intact endothelium-derived relaxing factor depends on endothelial SOD activity, Am. J. Physiol. 260:C219-C222.

    PubMed  Google Scholar 

  23. Battaglioli, G., Martin, D. L., Plummer, J., and Messer, A., 1993. Synaptosomal glutamate uptake declines progressively in the spinal cord of a mutant mouse with motor neuron disease, J. Neurochem. 60:1567-1569.

    PubMed  Google Scholar 

  24. Fesus, L., Thomazy, V., and Falus, A., 1988. Reaching for function of tissue transglutaminase; its possible involvement in biochemical pathway of programmed cell death, Adv. Exp. Biol. 231:119-139.

    Google Scholar 

  25. Folk, J. E. 1980. Transglutaminase, Ann. Rev. Biochem. 49:517-531.

    PubMed  Google Scholar 

  26. Holmes, F. E., and Haynes, L. W., 1996. Superactivation of transglutaminase type 2 without change in enzyme level occurs during progressive neurodegeneration in the mnd mouse mutant, Neurosci. Lett. 213:185-188.

    PubMed  Google Scholar 

  27. Dudek, S. M., and Johnson, G. V. W., 1993. Transglutaminase catalyses the formation of sodium dodecyl sulfate-insoluble Alz 50-reactive polymers of tissue, J. Neurochem. 61:1159-1162.

    PubMed  Google Scholar 

  28. Miller, C. C. J., and Anderton, B. H., 1986. Transglutaminase and the neuronal cytoskeleton in Alzheimer's disease, J. Neurochem. 46:1912-1922.

    PubMed  Google Scholar 

  29. Katoh, S., Nakagawa, Y., Yano, Y., Kohno, H., and Ohkubo, Y., 1996. Transglutaminase induced by epidermal growth factor negatively regulates the growth signal in primary cultures hepatocytes, Biochem. J. 313:305-309.

    PubMed  Google Scholar 

  30. Fujita, K., Yamauchi, M., Matsui, T., Titani, K., Takahashi, H., Kato, T., Isomura, G., Ando, M., and Nagata, Y., 1998. Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse, Brain Res., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, K., Shibayama, K., Yamauchi, M. et al. Alteration of Enzymatic Activities Implicating Neuronal Degeneration in the Spinal Cord of the Motor Neuron Degeneration Mouse During Postnatal Development. Neurochem Res 23, 557–562 (1998). https://doi.org/10.1023/A:1022442904179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022442904179

Navigation