Skip to main content
Log in

NGF Gene Expression in Dividing and Non-Dividing Cells from AAV-Derived Constructs

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

NGF expression in COS cells when driven by pTR.NGF (CMV promoter, AAV TRs) was more effective than either pc.NGF (CMV promoter, no AAV TRs) or dlk.NGF (AAV promoters and TRs). This NGF was able to differentiate PC12 cells. Differentiated PC12 cells transfected with pTR.NGF released NGF into medium. The fraction of pTR.NGF transfected PC12 cells that extended neurite-like processes 7 days post-transfection was similar to the transfection efficiency, suggesting that transfected cells were selectively differentiated by locally released NGF. pTR.NGF-transfected primary cultures of either neurons or glia did not express exogenous NGF. These results indicate that NGF can be released by dividing and non-dividing cells, but not neonatally derived brain cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wu, P., Ziska, D., Bonell, M., Grouzmann, E., Millard, W. J., and Meyer, E. M. 1994. Differential neuropeptide Y gene expression in post-mitotic versus dividing neuroblastoma cells driven by an adeno-associated virus vector. Brain Res. Mol. Brain Res. 24:27–33.

    Google Scholar 

  2. Wu, P., de Fiebre, C. M., Millard, W.-J., Elmstrom, K., Gao, Y., and Meyer, E. M. 1995. Sendai virosomal infusion of an adeno-associated virus-derived construct containing neuropeptide Y into primary rat brain cultures. Neurosci. Lett. 190:73–76.

    Google Scholar 

  3. Wu, P., de Fiebre, C. M., Millard, W. J., King, M. A., Wang, S., Bryant, S. O., Gao, Y-P., Martin, E. J., and Meyer, E. M. 1996. An AAV promoter-driven neuropeptide Y gene delivery system using Sendai virosomes for neurons and rat brain. Hum. Gene Ther. 3:246–253.

    Google Scholar 

  4. Kotin, R. M., Siniscalo, M., Samulski, R. J., Zhu, X., Hunter, L., Laughlin, C. A., McLaughlin, S., Muzyczka, N., Rocchi, M., and Berns, K. I. 1990. Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci., USA 87:2211–2215.

    Google Scholar 

  5. Muzyczka, N. 1992. Use of adeno-associated virus as a general transduction vector for mammalian cells. Cur. Top. Micro. Immunol. 158:97–129.

    Google Scholar 

  6. Kaplitt, M. G., Leone, P., Samulski, R. J., Xiao, X., Pfaff, D. W., O'Malley, K. L., and During, M. J. 1994. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genetics 8:148–154.

    Google Scholar 

  7. McCown, T. J., Xiao, X., Li, J., Breese, G. R., and Samulski, R. D. 1996. Differential and persistent expression patterns of CNV gene transfer by an adeno-associated virus (AAV) vector. Brain Res. 713:99–107.

    Google Scholar 

  8. Hefti, F., and Weiner, W. J. 1986. Nerve growth factor and Alzheimer's Disease. Ann. Neurol. 20:275–281.

    Google Scholar 

  9. Hefti, F. 1986. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6:2155–2162.

    Google Scholar 

  10. Williams, L. R., Varon, S., Peterson, G. M., Wictorin, K., Fisher, W., Bjorkland, A., and Gage, F. H. 1986. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci., USA 83:9231–9235.

    Google Scholar 

  11. Kromer, L. 1987. Nerve growth factor treatment after brain injury prevents neuronal death. Science 235:214–216.

    Google Scholar 

  12. Fisher, W., Wictorin, K., Bjorklund, A., Williams, L. R., Varon, S., and Gage, F. H. 1987. Amelioration of cholinergic neuron atrophy and spatial memory in aged rats by nerve growth factor. Nature 329:65–68.

    Google Scholar 

  13. Markowska, A. L., Koliatsos, V. E., Breckler, S. J., Price, D. L., and Olton, D. S. 1994. Human nerve growth factor improves spatial memory in aged but not in young rats. J. Neurosci. 14:4815–4824.

    Google Scholar 

  14. Tratschin, J-D., West, M. H. P., Sandbank, T., and Carter, B. J. 1985. A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation or the procaryotic gene for chloramphenicol acetyltransferase. Mol. Cell. Biol. 4:2071–2081.

    Google Scholar 

  15. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–804.

    Google Scholar 

  16. Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci., USA 73:2424–2428.

    Google Scholar 

  17. Poulakos, J. J., Millard, W. J., and Meyer, E. M. 1993. Modulation of neuropeptide Y expression in rat brain neuronal cultures. Dev. Brain Res. 74:25–29.

    Google Scholar 

  18. Martin, E. J., and Meyer, E. M. 1994. Cytoprotective actions of 2,4-dimethoxybenzylidene anabaseine in differentiated PC12 cells and spetal cholinergic neurons. Drug Dev. Res. 31:135–141.

    Google Scholar 

  19. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1991. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.

    Google Scholar 

  20. Fujita, K., Lazarovici, P., and Guroff, G. 1989. Regulation of the differentiation of PC12 pheochromocytoma cells. Environ. Health. Persp. 80:127–142.

    Google Scholar 

  21. Foecking, M. K., and Hofstetter, H. 1986. Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45:101–105.

    Google Scholar 

  22. Baskar, J. F., Smith, P. P., Nilaver, G., Jupp, R. A., Hoffmann, S., Peffer, N. J., Tenney, D. J., Colberg-Poley, A. N., Ghazal, P., and Nelson, J. A. 1996. The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J. Virol. 70:3207–3214.

    Google Scholar 

  23. Gluzman, Y. 1981. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182.

    Google Scholar 

  24. Hallböök, F., Ebendal, T., and Persson, H. 1988. Production and characterization of biologically active recombinant beta nerve growth factor. Mol. Cell. Biol. 8:452–456.

    Google Scholar 

  25. Flotte, T. R., Afione, S. A., Solow, R., Drumm, M. L., Markakis, D., Guggino, W. B., Zeitlin, P. L., and Carter, B. J. 1993. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J. Biol. Chem. 268:3781–3790.

    Google Scholar 

  26. Chao, M. V., and Hempstead, B. L. 1995. p75 and Trk: a two-receptor system. TINS 18:321–326.

    Google Scholar 

  27. Baskar, J. F., Smith, P. P., Ciment, G. S., Hoffmann, S., Tucker, C., Tenney, D. J., Colberg-Poley, A. M., Nelson, J. A. and Ghazal, P. 1996. Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J. Virol. 70:3215–3226.

    Google Scholar 

  28. de Fiebre, C. M., Bryant, S. O., and Meyer, E. M. 1993. Fusogenic properties of Sendai virosome envelopes in rat brain preparations. Neurochem. Res. 18:1089–1094.

    Google Scholar 

  29. Wang, S., Millard, W. J., and Meyer, E. M. 1995. Adeno-associated virus (AAV)—mediated NGF gene transfer into PC12 cells and rat brain. Soc. Neurosci. Abst. 21:37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Millard, W.J. & Meyer, E.M. NGF Gene Expression in Dividing and Non-Dividing Cells from AAV-Derived Constructs. Neurochem Res 23, 779–786 (1998). https://doi.org/10.1023/A:1022467628383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022467628383

Navigation