Skip to main content
Log in

The metabolism and structure of phosphoglycoproteins in rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycoproteins that contain phosphohexosyl groups were found to be present in the myelin- and synaptosomal-enriched fractions as well as in the microsomes of rat brain. The kinetics of flow of intraperitoneally injected [32P]phosphate suggests that the phosphate is enzymatically added in structures found in the microsomal fraction. The newly synthesized phosphoglycoproteins then appear in the soluble fraction of the synaptosomes and in the cytosol, prior to incorporation into the membranes of the synaptosomes and myelin. Phosphoglycopeptides recovered from the phosphoglycoprotein contain 3 Mannose units per N-acetylglucosamine residue; one of the mannose residues is phosphorylated. [13C]NMR studies indicate that the phosphoglycopeptides contain a chitobiose group and more than four sugar residues. Thus, the phosphomannoglycopeptides from rat brain contain an average of 2 N-acetylglucosamine, 6 mannose, and two phosphate moieties per oligosaccharide chain. Enzymatic treatment with α-mannosidase failed to remove the phosphomannose, although some mannose residues were released. Thus, the phosphorylated mannose is not removed by the glycosidase and terminal nonphosphorylated mannose residues are present in the oligosaccharide. The phosphate residues are removed by treatment with alkaline phosphatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamins, J. S., Miller, K., andMcKhann, G. M. 1973. Myelin subfractions in developing rat brain: Characterization and sulphatide metabolism. J. Neurochem. 20:1589–1603.

    PubMed  Google Scholar 

  2. Boas, N. F. 1953. Method for the determination of hexosamine in tissues. J. Biol. Chem. 204:553–563.

    PubMed  Google Scholar 

  3. Brunngraber, E. G. 1979. Neurochemistry of Aminosugars. Neurochemistry and Neuropathology of the Complex Carbohydrates, Charles C Thomas Publisher, Springfield, IL.

    Google Scholar 

  4. Brunngraber, E. G., andBrown, B. D. 1964. Heterogeneity of sialomucopolysaccharides prepared from whole rat brain. Biochim. Biophys. Acta 83:357–360.

    PubMed  Google Scholar 

  5. Brunngraber, E. G., Brown, B. D., andHof, H. 1971. Determination of gangliosides, glycoproteins, and glycosaminoglycans in brain tissue. Clin. Chim. Acta 32:159–170.

    PubMed  Google Scholar 

  6. Conchie, J., andStrachan, I. 1978. The carbohydrate units of ovalbumin: complete structures of three glycopeptides. Carbohyd. Res. 63:193–213.

    Google Scholar 

  7. Davis, L. G., Javaid, J. I., andBrunngraber, E. G. 1976. Identification of phosphoglycoproteins obtained from rat brain. FEBS Lett. 65:30–34.

    PubMed  Google Scholar 

  8. Davis, L. G., Costello, A. J. R., Javaid, J. I., andBrunngraber, E. G. 1976.31PNMR studies on the phosphoglycopeptides obtained from rat brain glycoproteins. FEBS Lett. 65:35–38.

    PubMed  Google Scholar 

  9. Distler, J., Hieber, V., Sahagian, G., Schmickel, R., andJourdian, G. W. 1979. Identification of mannose 6-phosphate in glycoproteins that inhibit the assimilation of β-galactosidase by fibroblasts. Proc. Natl. Acad. Sci. USA 76:4235–4239.

    PubMed  Google Scholar 

  10. Grossfeld, R. M., andShooter, E. M. 1971. A study of the changes in protein composition of mouse brain during ontogenetic development. J. Neurochem. 18:2265–2278.

    PubMed  Google Scholar 

  11. Hasilik, A., andNeufeld, E. F. 1980. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J. Biol. Chem. 255:2946–2952.

    Google Scholar 

  12. Heppel, L. A. 1955. Intestinal phosphomonoesterase. Meth. Enzymol. 2:530–533.

    Google Scholar 

  13. Hof, H. I., Susz, J. P., Javaid, J. I., andBrunngraber, E. G. 1975. Con A-binding glycopeptides from rat brain glycoproteins. Neurobiology 5:347–354.

    PubMed  Google Scholar 

  14. Javaid, J. I., Hof, H. I., andBrunngraber, E. G. 1975. Preparation and properties of Con A-binding glycopeptides derived from rat brain glycoproteins. Biochim. Biophys. Acta 404:74–82.

    PubMed  Google Scholar 

  15. Kaplan, A., Achord, D. T., andSly, W. S. 1977. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc. Natl. Acad. Sci. USA 74:2026–2030.

    PubMed  Google Scholar 

  16. Light, A. 1967. Leucine aminopeptidase. Meth. Enzymol. 11:426–428, 1967.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with Folin-phenol reagent. 1951. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  18. Natowicz, M. R., Chi, M. Y., Lowry, O. H., andSly, S. 1979. Enzymatic identification of mannose 6-phosphate on the recognition marker for receptor-mediated pinocytosis of β-glucuronidase by human fibroblasts. Proc. Natl. Acad. Sci. USA 76:4322–4326.

    PubMed  Google Scholar 

  19. Porter, W. H. 1975. Application of nitrous acid in determination of hexosamine to the simultaneous GLC determination of neutral and aminosugars in glycoproteins. Anal. Biochem. 63:27–43.

    PubMed  Google Scholar 

  20. Routtenberg, A., George, D. R., Davis, L. G., andBrunngraber, E. G. 1974. Memory consolidation and fucosylation of crude synaptosomal glycoproteins resolved by gel electrophoresis. A regional study. Behav. Biol. 12:461–475.

    PubMed  Google Scholar 

  21. Sando, G. N., andNeufeld, E. F. 1977. Recognition and receptor-mediated uptake of a lysosomal enzyme, α-L-iduronidase, by cultured human fibroblasts. Cell 12:619–625.

    PubMed  Google Scholar 

  22. Schranger, J., andOates, M. D. G. 1968. The carbohydrate components of hydrolyzates of gastric secretion and extracts from mucous glands of the gastric mucosa and antrum. Biochem. J. 106:523–529.

    PubMed  Google Scholar 

  23. Susz, J. P., Hof, H. I., andBrunngraber, E. G. 1973. Isolation of Con A-binding glycoproteins from rat brain. FEBS Lett. 32:289–292.

    PubMed  Google Scholar 

  24. Suzuki, K. 1965. The pattern of mammalian brain gangliosides. Evaluation of the extraction procedures, post-mortem changes, and the effect of formalin fixation. J. Neurochem. 12:629–638.

    PubMed  Google Scholar 

  25. Tabas, I., andKornfeld, D. 1980. Biosynthetic intermediates containing high mannose oligosaccharides with blocked phosphate residues. J. Biol. Chem. 255:6633–39.

    PubMed  Google Scholar 

  26. Whittaker, V. P., Michaelson, I. A., andKirkland, R. J. A. 1964. The separation of synaptic vesicles from nerve ending particles (“Synaptosomes”). Biochem. J. 90:293–303.

    PubMed  Google Scholar 

  27. Varki, A., andKornfeld, S. 1980. Identification of a rat liver α-N-acetylglucosaminyl phosphodiesterase capable of removing “blocking” α-N-acetylglucosaminyl residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J. Biol. Chem. 255:8398.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunngraber, E.G., Davis, L.G. & Somawardhana, C.W. The metabolism and structure of phosphoglycoproteins in rat brain. Neurochem Res 7, 1243–1256 (1982). https://doi.org/10.1007/BF00965895

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965895

Keywords

Navigation