Skip to main content
Log in

3W average power 4.3 μm CO2 laser

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A 3 W average power CO2 laser oscillating in the range of 4.3μm (10°1 to 10°O transition) is described. At the same time, the laser can emit 100 W in the sequence band 00°2 to 10°1 (10.6μm). It is based on a commercial system with continuous-wave discharge of 12 m length and a slow gas flow. It operates in the Q-switched mode at pulse repetition rates up to 15 kHz. The pulse peak power is 1 kW and the pulse duration is 200 ns. The deviation from the theoretical efficiency limit has been decreased by a factor 2.5 in our device, due to saturation of the pumping (sequence band) radiation. We predict an improvement by another factor of 5 (possible average power of 10 to 20 W), if one avoids the absorption in the discharge-free zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Solodukhin andS. A. Trushin,J. Appl. Spectrosc. 47 (1987) 666.

    Google Scholar 

  2. A. S. Solodukhin, V. S. Starovoitov, S. A. Trushin andV. V. Churakov,Chem. Phys. Lett. 158 (1989) 70.

    Google Scholar 

  3. Yu. A. Andreev, V. G. Voevodin, P. P. Geiko, V. V. Zuev, A. S. Solodukhin, S. A. Trushin andV. V. Churakov,Sov. J. Quantum Electron. 17 (1987) 2137.

    Google Scholar 

  4. Ju. A. Andrejev, V. G. Vojevodin, P. P. Gejko, V. V. Zujev, A. S. Soloduchin, S. A. Trušin andV. V. Čurakov,Optika Atm. 1 (1988) 51 (in Russian).

    Google Scholar 

  5. B. I. Stepanov, S. A. Trushin andV. V. Churakov,Sov. Phys. Dokl. 23 (1978) 910.

    Google Scholar 

  6. M. M. Ivanenko, S. A. Trushin andV. V. Churakov,J. Appl. Spectrosc. 41 (1984) 1011.

    Google Scholar 

  7. R. K. Brimacombe, J. Reid andT. A. Znotins,Appl. Phys. B36 (1985) 115.

    Google Scholar 

  8. R. K. Brimacombe andJ. Reid,J. Appl. Phys. 57 (1985) 4882.

    Google Scholar 

  9. A. S. Solodukhin andS. A. Trushin,Opt. and Quantum Electron. 18 (1986) 329.

    Google Scholar 

  10. R. K. Brimacombe andJ. Reid,Appl. Phys. Lett. 45 (1984) 813.

    Google Scholar 

  11. V. O. Petukhov, S. Ya. Tochitskii, S. A. Trushin andV. V. Churakov,Sov. Phys. Tech. Phys. Lett. 14 (1988) 577.

    Google Scholar 

  12. T. A. Znotins, J. Reid, B. K. Garside andE. A. Ballik,Appl. Phys. Lett. 39 (1981) 199.

    Google Scholar 

  13. A. S. Solodukhin andS. A. Trushin, Proceedings of the 11th International Conference on Infrared and Millimetre Waves, Pisa, Italy 1986, 440–442.

  14. A. S. Soloduchin, S. A. Trušin, submitted toKvantovaja Elektronika (1990).

  15. C. D'Ambrosio, W. Fuß, K. L. Kompa, W. E. Schmid, Springer Proceedings in Physics 15, ‘Gas Flow and Chemical Lasers’, edited by S. Rosenwaks, Springer, Berlin, 1987, p. 284.

    Google Scholar 

  16. C. D'Ambrosio, W. Fuß, K. L. Kompa, W. E. Schmid, S. Trushin, Conference on Gas Flow and Chemical Lasers, Vienna 1988,SPIE Vol.1031, p. 48.

    Google Scholar 

  17. A. S. Solodukhin, B. I. Stepanov, S. A. Trushin, AIP Conference Proceedings Series. The 1st International Conference on Laser Sciences, USA, 1986, 156–157.

  18. I. Suzuki,J. Mol. Spectr. 80 (1980) 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuß, W., Schmid, W.E., Kompa, K.L. et al. 3W average power 4.3 μm CO2 laser. Opt Quant Electron 23, 405–410 (1991). https://doi.org/10.1007/BF00619613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619613

Keywords

Navigation