Skip to main content
Log in

Photoablation of polyurethane films using UV laser pulses

  • Surface Modification and Ablation
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Pulsed ultraviolet laser ablation of two polyurethane films has been studied in terms of ablation rate behaviour and time-of-flight mass spectroscopy of the positively charged photofragments. Three excimer laser wavelengths (193, 248 and 308 nm; 17–30 ns pulse duration) and short-pulse laser system (pulse duration 500 fs or 5 ps, at 248 nm) were employed. The results of the influence of energy fluence on the ablation rate are tested against other photoablation models and a table of fitted physical constants is presented. The upper limit of the mean activation energy for desorption is found to be considerably lower than the energy required to break single covalent bonds. The mass analysis of the positively charged species produced during the photoablation process provides valuable insight into the photofragmentation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Miller (ed.), Laser Ablation — Principles and Applications, Springer Series in Materials Science 28 (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  2. E. Fogarassy and S. Lazare (eds.), Laser Ablation of Electronic Materials — Basic Mechanisms and Applications, Proc. European Materials Research Society Monographs 4 (North-Holland Elsevier, Amsterdam, 1992).

    Google Scholar 

  3. P. E. Dyer, Photochemical Processing of Electronic Materials (Academic Press, London, 1992).

    Google Scholar 

  4. R. Srinivasan and B. Braren, Chem. Rev. 89 (1989) 1303.

    Google Scholar 

  5. J. T. C. Yeh, J. Vac. Sci. Technol. A 4 (1986) 653.

    Google Scholar 

  6. R. Srinivasan, Appl. Phys. A 56 (1993) 417.

    Google Scholar 

  7. B. Luk'yanchuk, N. Bityurin, S. Anisimov and D. Bäuerle, Appl. Phys. A 57 (1993) 367.

    Google Scholar 

  8. B. Luk'yanchuk, N. Bityurin, S. Anisimov and D. Bäuerle, Appl. Phys. A 57 (1993) 449.

    Google Scholar 

  9. B. Luk'yanchuk, N. Bityurin, S. Anisimov and D. Bäuerle, Excimer LAsers, edited by L. D. Laude, NATO ASI Series E: Applied Sciences 265 (Kluwer Academic Publishers, Dordrecht, 1994) p. 59.

    Google Scholar 

  10. S. Küper, J. Brannon and K. Brannon, Appl. Phys. A 56 (1993) 43.

    Google Scholar 

  11. S. Küper and M. Stuke, Appl. Phys. B 44 (1987) 199.

    Google Scholar 

  12. B. J. Garrison and R. Srinivasan, Appl. Phys. Lett. 44 (1984) 849.

    Google Scholar 

  13. H. H. Jellinek and R. Srinivasan, J. Phys. Chem. 88 (1984) 3048.

    Google Scholar 

  14. G. Gorodetsky, T. G. Kazyaka, R. L. Melcher and R. Srinivasan, Appl. Phys. Lett. 46 (1985) 828.

    Google Scholar 

  15. V. Srinivasan, M. A. Smrtic and S. V. Babu, J. Appl. Phys. 59 (1986) 3861.

    Google Scholar 

  16. R. Srinivasan, B. Braren, R. W. Dreyfus, L. Hadel and D. E. Seeger J. Opt. Soc. Am. B 3 (1986) 785.

    Google Scholar 

  17. H. S. Cole, Y. S. Liu and H. R. Philipp, Appl. Phys. Lett. 48 (1986) 76.

    Google Scholar 

  18. E. Sutcliffe and R. Srinivasan, J. Appl. Phys. 60 (1986) 3315.

    Google Scholar 

  19. R. Srinivasan, B. Braren and R. W. Dreyfus, J. Appl. Phys. 61 (1987) 372.

    Google Scholar 

  20. S. Küper and M. Stuke, Appl. Phys. Lett. 54 (1989) 4.

    Google Scholar 

  21. G. H. Pettit and R. Sauerbrey, Appl. Phys. A 56 (1993) 51.

    Google Scholar 

  22. G. H. Pettit, M. N. Ediger, D. W. Hahn, B. E. Brinson and R. Sauerbrey, Appl. Phys. A 58 (1994) 573.

    Google Scholar 

  23. S. R. Cain, F. C. Burns and C. E. Otis, J. Appl. Phys. 71 (1992) 4107.

    Google Scholar 

  24. S. R. Cain, F. C. Burns, C. E. Otis and B. Braren, J. Appl. Phys. 72 (1992) 5172.

    Google Scholar 

  25. P. E. Dyer and R. Srinivasan, Appl. Phys. Lett. 48 (1986) 445.

    Google Scholar 

  26. T. Keyes, R. H. Clarke and J. M. Isner, J. Phys. Chem. 89 (1985) 4194.

    Google Scholar 

  27. R. Srinivasan, J. Appl. Phys. 73 (1993) 2743.

    Google Scholar 

  28. R. Srinivasan, B. Braren, D. E. Seeger and R. W. Dreyfus, Macromolecules 19 (1986) 916.

    Google Scholar 

  29. G. Ulmer, B. Hasselberger, H.-G. Busmann and E. E. B. Campbell, Appl. Surf. Sci. 46 (1990) 272.

    Google Scholar 

  30. E. E. B. Campbell, G. Ulmer, B. Hasselberger, H.-G. Busmann and I. V. Hertel, J. Chem. Phys. 93 (1990) 6900.

    Google Scholar 

  31. J. T. Brenna, W. R. Cresy and W. Volksen, Chem. Phys. Lett. 163 (1989) 499.

    Google Scholar 

  32. P. L. G. Ventzek, R. M. Gilgenbach, C. H. Ching and R. A. Lindley, J. Appl. Phys. 72 (1992) 1696.

    Google Scholar 

  33. T. Sumiyoshi, Y. Ninomiya, H. Ogasawara, M. Obara and H. Tanaka, Appl. Phys. A 58 (1994) 475.

    Google Scholar 

  34. E. E. B. Campbell, G. Ulmer, B. Hasselberger and I. V. Hertel, Appl. Surf. Sci. 43 (1989) 346.

    Google Scholar 

  35. R. Larciprete and M. Stuke, Appl. Phys. B 42 (1987) 181.

    Google Scholar 

  36. J. D. Roberts and M. C. Caserio, Basic Principles of Organic Chemistry (W. A. Benjamin, Menlo Park, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafiropulos, V., Petrakis, J. & Fotakis, C. Photoablation of polyurethane films using UV laser pulses. Opt Quant Electron 27, 1359–1376 (1995). https://doi.org/10.1007/BF00326488

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326488

Keywords

Navigation