Skip to main content
Log in

Modelling of chemical vapour deposition for optical fibre manufacture

  • Fundamental Research (I)
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A study of numerical modelling has been carried out for chemical vapour deposition processes with applications to manufacture of optical fibres. Temperature distributions and thermophoretic particle deposition have been calculated for the modified chemical vapour deposition (MCVD) and the outside vapour deposition (OVD) processes. A two torch formulation and a heat flux boundary condition are used for MCVD and the present model is shown to be capable of predicting tube wall temperatures and deposition profiles correctly. The present results are in agreement with experimental data. For OVD modelling, nonorthogonal body-fitted coordinates have been utilized to solve a conjugate problem including the jet flow and heat conduction through a two-layered cylinder that consists of an original target and the deposited porous layers. Surface temperatures and efficiencies of particle deposition have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B.Macchesney, P. B.O'Connor andH. M.Presby,Proc. IEEE 62 (1974) 1278.

    Google Scholar 

  2. P.Getter, H. J.Hagemann, J.Warnier andH.Wilson,J. Lightwave Technol. LT-4 (1986) 818.

    Google Scholar 

  3. M. G.Blankenship andC. W.Deneka,IEEE J. Quantum Electron. QE-18 (1982) 1418.

    Google Scholar 

  4. H.Murata,J. Lightwave Technol. LT-4 (1986) 1026.

    Google Scholar 

  5. J. R. Bautista, K. L. Walker andR. M. Atkins,Chem. Eng. Prog. (1990) 47.

  6. D. B.Keck andA. J.Morrow,Phil. Trans. R. Soc. Lond. A329 (1989) 71.

    Google Scholar 

  7. K. L.Walker, F. T.Geyling andS. R.Nagel,J. Am. Ceram. Soc. 63 (1980) 552.

    Google Scholar 

  8. L.Talbot, R. K.Cheng, R. W.Schfer andD. R.Willis,J. Fluid Mech. 101 (1980) 737.

    Google Scholar 

  9. K. S.Kim andS. E.Pratsinis,AIChE J. 34 (1988) 912.

    Google Scholar 

  10. M.Choi, Y. T.Lin andR.Greif,ASME J. Heat Transfer 112 (1990) 1063.

    Google Scholar 

  11. Y. T.Lin, M.Choi andR.Greif,ASME J. Heat Transfer 114 (1992) 735.

    Google Scholar 

  12. S.Joh, R.Greif andY. T.Lin,J. Mater. Process. Manuf. Sci. 1 (1993) 369.

    Google Scholar 

  13. G. M.Homsy, F. T.Geyling, andK. L.Walker,J. Colloid Interface Sci. 83 (1981) 495.

    Google Scholar 

  14. G. K.Batchelor andC.Shen,J. Colloid Interface Sci. 107 (1985) 21.

    Google Scholar 

  15. S. H.Kang andR.Greif,Int. J. Heat Mass Transfer 36 (1993) 1007.

    Google Scholar 

  16. R. L.Panton,Incompressible Flow, (Wiley, New York, 1984).

    Google Scholar 

  17. J. Cho andM. Choi,ASME Winter Annual Meeting (1994) 94-WA/HT-17.

  18. U. C.Paek andR. B.Runk,J. Appl. Phys. 49 (1978) 4417.

    Google Scholar 

  19. G. M. Homsy andK. L. Walker,Glass Technol. (1979) 20.

  20. K. S.Park andM.Choi,Int. J. Heat Mass Transfer 37 (1994) 1593.

    Google Scholar 

  21. S. V.Patankar,Numerical Heat and Fluid Flows (Hemisphere, New York, 1980).

    Google Scholar 

  22. Y.Song, M.Choi andS. H.Kang,Transport Phenomena in Thermal Engineering 2 (1993) 1119.

    Google Scholar 

  23. Y. Song, M. S. Thesis, Seoul National University, Department of Mechanical Engineering (1993).

  24. D. E.Rosner,Transport Processes in Chemically Reacting Flow Systems (Butterworths, Boston, 1986) p. 314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, M., Park, K.S. & Cho, J. Modelling of chemical vapour deposition for optical fibre manufacture. Opt Quant Electron 27, 327–335 (1995). https://doi.org/10.1007/BF00563567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00563567

Keywords

Navigation