Skip to main content
Log in

An Engineering Model of Dynamic Cardiomyoplasty. I.

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dynamic cardiomyoplasty (DCM) is an emerging surgical procedure for heart failure in which the patient's latissimus dorsi (LD) muscle is wrapped around the heart and stimulated to contract in synchrony with the heartbeat as a cardiac assist measure. A 6 week training protocol of progressive electrical stimulation renders the normally fatigueable skeletal muscle fatigue-resistant and suitable for chronic stimulation. To date, over 500 procedures have been performed in worldwide clinical trials. Investigators typically report symptomatic improvement and modest hemodynamic improvement in patients. Controversy exists regarding the exact mechanism of DCM. To test the hypothesis that DCM augments cardiac stroke volume through improvement in systolic function, we formulated an engineering model of dynamic cardiomyoplasty to predict stroke volume. The heart and the LD were modeled as nested (series) elastance chambers, and the vasculature was represented by a two-element Windkessel model. Using five healthy goats, we verified model predictions of stroke volume for both stimulator ON beats (y=1.00x−0.08, r=0.87, p < 0.0001) and OFF beats (y=1.01x+1.06, r=0.91, p < 0.0001), where x and y are the measured and predicted stroke volumes, respectively. The model confirms that using untrained latissimus dorsi applied to the normal myocardium produces only moderate increases in stroke volume and suggests that future research should focus on increasing LD strength after training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aklog, L., M. P. Murphy, F. Y. Chen, W. J. Smith, R. G. Laurence, R. F. Appleyard, and L. H. Cohn. Right latissimus dorsi cardiomyoplasty improves left ventricular function by increasing peak systolic elastance (E max). Circulation90(II):112-119, 1994.

    Google Scholar 

  2. Anderson, W. A., J. S. Andersen, M. A. Acker, R. L. Hammond, A. J. Chin, P. S. Douglas, A. S. Khalafalla, S. Salmons, and L. W. Stephenson. Skeletal muscle grafts applied to the heart: A word of caution. Circulation78(III):180-190, 1988.

    Google Scholar 

  3. Baan, J., E. T. van der Velde, H. G. deBruin, G. J. Smeenk, J. Koops, A. D. van Dijk, D. Temmerman, J. Senden, and B. Buis. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation70:812-823, 1984.

    Google Scholar 

  4. Baan, J., E. T. van der Velde, A. D. van Dijk, P. L. M. Kerkhof, B. Buis, and J. Koops. Ventricular volume measured from intracardiac dimensions with impedance catheter: theoretical and experimental aspects. In: Cardiovascular Systems Dynamics: Models and Measurements, edited by Th. Kenner, R. Busse, and H. Hinghofer-Szalkay. New York: Plenum, 1982, pp. 569-579.

    Google Scholar 

  5. Berne, R. M., and M. N. Levy. Cardiovascular Physiology. St. Louis, MO: Mosby, 1986, p. 219.

    Google Scholar 

  6. Burkhoff, D., E. van der Velde, D. Kass, J. Baan, W. L. Maughan, and K. Sagawa. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation72:440-447, 1985.

    Google Scholar 

  7. Carpentier, A., and J. C. Chachques. Myocardial substitution with a stimulated skeletal muscle: First successful clinical case. Lancet8440:1267, 1985.

    Google Scholar 

  8. Chen, F. Y., L. Aklog, B. J. deGuzman, R. G. Laurence, G. S. Couper, L. H. Cohn, and T. A. McMahon. New technique measures decreased transmural myocardial pressure in cardiomyoplasty. Ann. Thorac. Surg.60(6):1678-1682, 1995.

    Google Scholar 

  9. Chen, F. Y., B. J. deGuzman, L. Aklog, D. B. Lautz, R. M. Ahmad, R. G. Laurence, G. S. Couper, L. H. Cohn, and T. A. McMahon. Decreased myocardial oxygen consumption indices in dynamic cardiomyoplasty. Circulation94(II):239-244, 1996.

    Google Scholar 

  10. Delahaye, F., O. Jegaden, P. Montagna, P. Desseigne, P. Blanc, C. Vedrinee, P. Touboul, A. Saint-Pierre, M. Perinetti, and R. Rossi. Latissimus dorsi cardiomyoplasty in severe congestive heart failure: The Lyon experience. J. Card. Surg.9:239-51, 1990.

    Google Scholar 

  11. El Oakley, R. M., and J. C. Jarvis. Cardiomyoplasty: a critical review of experimental and clinical results. Circulation90:2085-2090, 1994.

    Google Scholar 

  12. Frank, O. Die grundform des arteriellen pulses. Erste abhanklung, mathematishe analyse. Z. Biol.37:483-526, 1899.

    Google Scholar 

  13. Gawne, T. J., K. S. Gray, and R. E. Goldstein. Estimating left ventricular offset volume using dual-frequency conductance catheters. J. Appl. Physiol.63:872-876, 1987.

    Google Scholar 

  14. Jatene, A. D., L. F. P. Moreira, N. A. Stolf, E. A. Bocchi, P. J. Seferian, P. M. Fernandes, and H. Abensur. Left ventricular function changes after cardiomyoplasty in patients with dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg.102:132-9, 1991.

    Google Scholar 

  15. Kono, A., W. L. Maughan, K. Sunagawa, K. Hamilton, K. Sagawa, and M. L. Weisfeldt. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation70(6):1057-1065, 1984.

    Google Scholar 

  16. Lautz, D. B., B. J. deGuzman, F. Y. Chen, R. M. Ahmad, R. G. Laurence, and L. H. Cohn. The tension-length relationship in trained latissimus dorsi muscle. Surg. Forum.46:269-271, 1995.

    Google Scholar 

  17. Lee, K. F., R. J. Dignan, J. M. Parmar, C. M. Dyke, G. Benton, T. J. Yeh, A. S. Abd-Elfattah, and A. S. Wechsler. Effects of dynamic cardiomyoplasty on left ventricular performance and myocardial mechanics in dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg.102:124-31, 1991.

    Google Scholar 

  18. Liu, Z., K. P. Brin, and F. C. P. Yin. Estimation of total arterial compliance: and improved method and evaluation of current methods. Am. J. Physiol.251(20):H588-H600, 1986.

    Google Scholar 

  19. Magovern, G. J., F. R. Heckler, S. B. Park, I. Y. Chrislieb, G. A. Liebler, J. A. Brukholder, T. D. Maher, D. H. Benckart, and G. J. Magovern. Paced skeletal muscle for dynamic cardiomyoplasty. Ann. Thorac. Surg.45:614-9, 1988.

    Google Scholar 

  20. Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J.9:198-200, 1973.

    Google Scholar 

  21. Moreira, L. F., N. A. Stolf, E. A. Bocchi, A. C. Pereira-Barretto, J. C. Meneghetti, M. C. Giorgi, A. V. Moraes, J. J. Leite, L. da Luz, and A. D. Jatene. Latissimus dorsi cardiomyoplasty in the treatment of patients with dilated cardiomyopathy. Circulation82(IV):257-262, 1991.

    Google Scholar 

  22. Oh, J. H., V. Badhwar, and R. C. J. Chiu. Mechanisms of dynamic cardiomyoplasty: Current concepts. J. Card. Surg.11:194-199, 1996.

    Google Scholar 

  23. Perier, P., C. Acar, and J. C. Chachques. Anatomy of the latissimus dorsi muscle. In: Cardiomyoplasty, edited by A. Carpentier. Mount Kisco, NY: Futura, 1991, pp. 63-76.

    Google Scholar 

  24. Role, L., D. Bogen, T. A. McMahon, and W. H. Abelmann. Regional variations in calculated diastolic wall stress in rat left ventricle. Am. J. Physiol.235(2):H247-H250, 1978.

    Google Scholar 

  25. Sagawa, I., H. Suga, A. Shoukas, and K. M. Bakalar. Endsystolic pressure/volume ratio: a new index of ventricular contractility. Am. J. Cardiol.40:748-249, 1977.

    Google Scholar 

  26. Salmons, S., and J. C. Jarvis. The working capacity of skeletal muscle transformed for use in a cardiac assist role. In: Transformed Muscle for Cardiac Assist and Repair, edited by R. C. J. Chiu and I. M. Bourgeois. Mount Kisco, NY: Futura, 1990, pp. 89-104.

    Google Scholar 

  27. Salmons, S., and J. C. Jarvis. Cardiac assistance from skeletal muscle: A critical appraisal of various approaches. Br. Heart J.68:333-338, 1992.

    Google Scholar 

  28. Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res.35:117-126, 1974.

    Google Scholar 

  29. Sugiura, S., K. Harada, I. Yokoyama, S. Momomura, Y. Naruse, H. Maku-uchi, T. Serizawa, H. Matsunaga, M. Iizuka, A. Furuse, and T. Sugimoto. Analysis of cardiac assistance by latissimus dorsi cardiomyoplasty with a time varying elastance model. Cardiovasc. Res.27:997-1003, 1993.

    Google Scholar 

  30. Sunagawa, K., W. L. Maughan, D. Burkhoff, and K. Sagawa. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol.245(14):H773-H780, 1983.

    Google Scholar 

  31. Sunagawa, K., K. Sagawa, and W. L. Maughan. Ventricular interaction with the loading system. Ann. Biomed. Eng.12:163-189, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F.Y., Lautz, D.B., deGuzman, B.J. et al. An Engineering Model of Dynamic Cardiomyoplasty. I.. Annals of Biomedical Engineering 26, 441–453 (1998). https://doi.org/10.1114/1.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.77

Navigation