Skip to main content
Log in

Long-term expression of a retrovirally introduced β-galactosidase gene in rodent cells implanted in vivo using biodegradable polymer meshes

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Grafts of various types of cells have been performed using bioresorbable polymer matrices. These synthetic fibers are degraded by hydrolysis into normal metabolic intermediates and induce a number of events that are conducive to healing and/or repair, the most important of which may be angiogenesis. The use of biodegradable meshes to deliver genetically altered cells was studied. A β-galactosidase gene was inserted into Long-Evans rat bone marrow stromal (BMS) cells or fibroblasts derived from C57BL/6J mouse embryos using the retroviral vector LNL-SLXβgal. Expression was monitored using X-gal staining. X-gal+ cells from monolayer cultures were seeded onto either polyglycolic acid (PGA) or polyglactin (PGL) biodegradable meshes and grown to confluence. Two types of grafts were performed: (1) embryonic C57BL/6J mouse fibroblasts (EMF) into either nude mice or adult C57BL/6J mice, and (2) Long-Evans rat BMS into Long-Evans rats. β-Galactosidase activity was found for up to 152 days for EMF in nude mice, 123 days for EMF in adult C57BL/6J mice, and 90 days for grafts of syngeneic BMS cells into Long-Evans rats. Noninfected cells grafted using the same methods did not stain with X-gal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A., and Bernstein, A. (1985).Cell 4271–79.

    PubMed  Google Scholar 

  2. Keller, G., Paige, C., Gilboa, E., and Wagner, E.F. (1985).Nature 318149–154.

    PubMed  Google Scholar 

  3. St. Louis, D., and Verma, I.M. (1988).Proc. Natl. Acad. Sci. U.S.A. 853150–3154.

    PubMed  Google Scholar 

  4. Selden, R.F., Skoskiewicz, M.J., Burke Howie, K., Russell, P.S., and Goodman, H.M. (1987).Science 236714–718.

    PubMed  Google Scholar 

  5. Scharfmann, R., Axelrod, J.H., and Verma, I.M. (1991).Proc. Natl. Acad. Sci. U.S.A. 884626–4630.

    PubMed  Google Scholar 

  6. Wilson, J.M., Birinyi, L.K., Salomon, R.N., Libby, P., Callow, A.D., and Mulligan, R.C. (1989).Science 2441344–1346.

    PubMed  Google Scholar 

  7. Short, M.P., Choi, B.C., Lee, J.K., Malick, A., Breakefield, X.O., and Martuza, R.L. (1990).J. Neurosci. Res. 27427–433.

    PubMed  Google Scholar 

  8. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990).Science 2471465–1468.

    PubMed  Google Scholar 

  9. Nabel, E.G., Plautz, G., Boyce, F.M., Stanley, J.C., and Nabel, G.J. (1989).Science 2441342–1344.

    PubMed  Google Scholar 

  10. Anderson, K.D., Thompson, J.A., DiPietro, J.M., Montgomery, K.T., Reid, L.M., and Anderson, W.F. (1989).Somat. Cell Mol. Genet. 15215–227.

    PubMed  Google Scholar 

  11. Gilbert, J. C., Takada, T., Stein, J.E., and Vacanti, J.P. (1992).Transplantation (in press).

  12. Nabel, E.G., Plautz, G., and Nabel, G.J. (1990).Science 2491285–1287.

    PubMed  Google Scholar 

  13. Jaenisch, R. (1980).Cell 19181–188.

    PubMed  Google Scholar 

  14. Kaneda, Y., Iwai, K., and Uchida, T. (1989).J. Biol. Chem. 26412,126–12,129.

    Google Scholar 

  15. Chang, P.L., Capone, J.P., and Brown, G.M. (1990).Mol. Biol. Med. 7461–470.

    PubMed  Google Scholar 

  16. Vacanti, J.P., Morse, M.A., Saltzman, W.M., Domb, A.J., Perez-Atayde, A., and Langer, R. (1988).J. Pediatr. Surg. 233–9.

    Google Scholar 

  17. Cima, L.G., Vacanti, J.P., Vacanti, C., Ingber, D., Mooney, D., and Langer, R. (1991).J. Biomech. Eng. 113143–151.

    PubMed  Google Scholar 

  18. Cooper, M.L., Hansbrough, J.F., Spielvogel, R.L., Cohen, R., Bartel, R., and Naughton, G. (1991).Biomaterials 12243–248.

    PubMed  Google Scholar 

  19. Cooper, M.L., Hansbrough, J.F., Spielvogel, R., Cohen, R., Bartel, R.L., and Naughton, G. (1992).Surgery 111438–446.

    PubMed  Google Scholar 

  20. Craig, P.H., Williams, J.A., Davis, K.W., Magoun, A.D., Levy, A.J., Bogdansky, S., and Jones, J.P., Jr. (1975).Surg. Gynecol. Obstet. 1411–10.

    PubMed  Google Scholar 

  21. Halberstadt, C., Bartel, R.L., Slivka, S.R., Underwood, J., Zeigler, F., and Naughton, G.K. (1992).J. Invest. Dermatol. 98601.

    Google Scholar 

  22. Bender, M.A., Palmer, T.D., Gelinas, T.E., and Miller, A.D. (1987).J. Virol. 611639–1646.

    PubMed  Google Scholar 

  23. Weiss, L. (1974).Anat. Rec. 186161–184.

    Google Scholar 

  24. Horwitz, J.P., Chua, J., Curby, R.J., Tomson, A.J., DaRooge, M.A., Fisher, B.E., Mauricio, J., and Klundt, I. (1964).J. Med. Chem. 7574–575.

    Google Scholar 

  25. Naughton, B.A., Liu, P., Kolks, G.A., Arce, J.M., Piliero, S.J., and Gordon, A.S. (1980).Am. J. Physiol. 238E245-E252.

    PubMed  Google Scholar 

  26. Naughton, B.A., Dornfest, B.S., Bush, M.E., Carlson, C.A., and Lapin, D.M. (1990).J. Lab. Clin. Med. 116498–507.

    PubMed  Google Scholar 

  27. Williams, D.A., Lemischka, I.R., Nathan, D.G., and Mulligan, R.C. (1984).Nature 310476–480.

    PubMed  Google Scholar 

  28. McIvor, R.S., Johnson, M.J., Miller, A.D., Pitts, S., Williams, S.R., Valerio, D., Martin, D.W., Jr., and Verma, I.M. (1987).Mol. Cell. Biol. 7838.

    PubMed  Google Scholar 

  29. Peng, H., Armentano, D., MacKenzie-Graham, L., Shen, R-F, Darlington, G., Ledley, F., and Woo, S.L.C. (1988).Proc. Natl. Acad. Sci. U.S.A. 858146–8150.

    PubMed  Google Scholar 

  30. Wilson, J.M., Jefferson, D.M., Chowdhury, J.R., Novikoff, P.M., Johnston, D.E., and Mulligan, R.C. (1988).Proc. Natl. Acad. Sci. U.S.A. 853014–3018.

    PubMed  Google Scholar 

  31. Plautz, G., Nabel, E.G., and Nabel, G.J. (1991).New Biol. 3709–715.

    PubMed  Google Scholar 

  32. Miller, A.D., Ong, E.S., Rosenfeld, M.G., Verma, I.M., and Evans, R.M. (1984).Science 225993–998.

    PubMed  Google Scholar 

  33. Axelrod, J.H., Read, M.S., Brinkhous, K.M., and Verma, I.M. (1990).Proc. Natl. Acad. Sci. U.S.A. 875173–5177.

    PubMed  Google Scholar 

  34. Palmer, T.D., Thompson, A.R., and Miller, A.D. (1989).Blood 73438–445.

    PubMed  Google Scholar 

  35. Tani, K., Ozawa, K., Ogura, H., Takahashi, T., Okano, A., Watari, K., Matsudaira, T., Tajika, K., Asono, S., and Takaku, F. (1989).Blood 741274–1280.

    PubMed  Google Scholar 

  36. Garver, R.I., Jr., Chytil, A., Karlsson, S., Fells, G.A., Brantly, M.L., Courtney, M., Kantoff, P.W., Nienhuis, A.W., Anderson, W.F., and Crystal, R.G. (1987).Proc. Natl. Acad. Sci. U.S.A. 841050–1054.

    PubMed  Google Scholar 

  37. Hayflick, L. (1965).Exp. Cell Res. 37614–636.

    PubMed  Google Scholar 

  38. Sudhakaran, P.R., Stamatoglou, S.C., and Hughes, R.C. (1986).Exp. Cell Res. 167505–516.

    PubMed  Google Scholar 

  39. Schmidhauser, C., Bissell, M.J., Myers, C.A., and Casperson, G.F. (1990).Proc. Natl. Acad. Sci. U.S.A. 879118–9122.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naughton, B.A., Dai, Y., Sibanda, B. et al. Long-term expression of a retrovirally introduced β-galactosidase gene in rodent cells implanted in vivo using biodegradable polymer meshes. Somat Cell Mol Genet 18, 451–462 (1992). https://doi.org/10.1007/BF01233085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233085

Keywords

Navigation