Skip to main content
Log in

Spectra and Structures of Silicon-Containing Compounds. XXIV.* Raman and Infrared Spectra, r 0 Structural Parameters, Vibrational Assignment, Barriers to Internal Rotation, and Ab Initio Calculations of Ethylsilane

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The infrared (3200 to 400 cm−1) and Raman (3200 to 20 cm−1) spectra of gaseous and solid ethylsilane, CH3CH2SiH3, have been recorded. Additionally, the Raman spectrum of the liquid has been obtained with quantitative depolarization values. The SiH3 torsional mode has been observed as sum and difference bands with the silicon-hydrogen stretching vibration. Utilizing the torsional fundamental frequency of 132 cm−1 the threefold periodic barrier of 590 cm−1 (7.06 kJ/mol) has been obtained. Utilizing the frequencies of the silicon-hydrogen stretches, Si-H bond distances of 1.485 and 1.484 Å have been obtained for the bonds gauche and trans to the methyl group, respectively. Using previously reported rotational constants from seven different isotopomers, the r 0 parameters have been calculated and are compared to the corresponding r s parameters. A complete vibrational assignment is proposed that is consistent with the predicted frequencies utilizing the force constants from ab initio MP2/6-31G(d) calculations. Both the infrared intensities as well as the Raman activities and depolarization values have been obtained from the ab initio calculations. Complete equilibrium geometries have been determined by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p), and 6-311+G(2d,2p) basis sets at levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and the theoretical values are compared to the experimental values when appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Petersen, D. H.; Pierce, L. 15th Symposium on Molecular Structure and Spectroscopy; Columbus, OH (June 1960), Paper N10.

  2. Petersen, D. H. Ph.D. Thesis, University of Notre Dame, South Bend, IN (1960).

  3. Durig, J. R.; Groner, P.; Lopata, A. D. Chem Phys. 1977, 21, 401.

    Google Scholar 

  4. Mackay, K. M.; Watt, R. Spectrochim. Acta 1967, 23A, 2761.

    Google Scholar 

  5. Ponamarenko, V. A.; Vzenkova, G. Ia.; Egorov, Iu. P. Dokl. Akad. Nauk. S.S.S.R. 1958, 122, 405.

    Google Scholar 

  6. Durig, J. R.; Hawley, C. W. J. Phys. Chem. 1971, 75, 3993.

    Google Scholar 

  7. Little, T. S.; Zhu, X.; Wang, A.; Durig, J. R.; Dakkouri, M.; Hermann, T.; Sala, O. Spectrochim. Acta 1993, 49A, 1913.

    Google Scholar 

  8. Durig, J. R., Little, T. S.; Zhu, X. Dakkouri, M. J. Mol. Struc. 1993, 293, 15.

    Google Scholar 

  9. Durig, J. R., Geyer, T. J.; Little, T. S.; Dakkouri, M. J. Phys. Chem. 1985, 89, 4307.

    Google Scholar 

  10. Shen, Shiyu; Zhen, Pengqian; Durig, J. R. Asian J. Spectrosc. 1997, 1, 99.

    Google Scholar 

  11. McKean, D. C. J. Mol. Struct. 1984, 113, 251.

    Google Scholar 

  12. Moller, C.; Plesset, H. S. Phys. Rev. 1934, 46, 618.

    Google Scholar 

  13. Fransisco, J. S.; Schlegel, H. S. J. Chem. Phys. 1988, 88, 3736.

    Google Scholar 

  14. Gano, D. R.; Gordon, M. S.; Boatz, J. J. Am. Chem. Soc. 1991, 113, 6711.

    Google Scholar 

  15. Furic, K.; Durig, J. R. Appl. Spectrosc. 1988, 42, 175.

    Google Scholar 

  16. Miller, F. A.; Harney, B. M. Appl. Spectrosc. 1970, 24, 291.

    Google Scholar 

  17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersen, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-La-ham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94 (Revision B.3), Gaussian Inc.: Pittsburgh, PA, 1995.

    Google Scholar 

  18. Pulay, P. Mol. Phys. 1969, 17, 197.

    Google Scholar 

  19. Schachtschneider, J. H. Vibrational Analysis of Polyatomic Molecules, Parts V and VI, Technical Report Nos. 231 and 57; Shell Development Co.: Houston, TX, 1964 and 1965.

    Google Scholar 

  20. Chantry, G. W. In The Raman Effect, Vol. 1, Chap. 2, A. Anderson, ed.; Marcel Dekker, Inc.: New York, 1971.

    Google Scholar 

  21. Polavarapu, P. L. J. Phys. Chem. 1990, 94, 8106.

    Google Scholar 

  22. Frisch, M. J.; Yamaguchi, Y.; Gaw, J. F.; Schaefer III, H. F.; Binkley, J. S. J. Chem. Phys. 1986, 84, 531.

    Google Scholar 

  23. Amos, R. D. Chem. Phys. Lett. 1986, 124, 376.

    Google Scholar 

  24. Durig, J. R.; Craven, S. M.; Harris, W. C. In Vibrational Spectra and Structure, Vol. 1, Chap. 4, J. R. Durig, ed.; Marcel Dekker: New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, T.A., Guirgis, G.A., Nashed, Y.E. et al. Spectra and Structures of Silicon-Containing Compounds. XXIV.* Raman and Infrared Spectra, r 0 Structural Parameters, Vibrational Assignment, Barriers to Internal Rotation, and Ab Initio Calculations of Ethylsilane. Structural Chemistry 9, 255–264 (1998). https://doi.org/10.1023/A:1022426829370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022426829370

Navigation