Skip to main content
Log in

Formation mechanisms and structure of the luminescence spectra of a dense resonant medium

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The purely thermal visible and infrared radiation emitted by a dense resonant medium (sodium vapor) heated nonuniformly to temperatures of 600–1200 K was investigated experimentally for the first time under conditions where the photon mean free path is comparable with the emission wavelength. The profile of the recorded spectra and the absolute luminescence intensities in the different spectral ranges show good agreement with the results of a numerical simulation using a previously developed theory of resonance radiation transport which assumes a Boltzmann spectral distribution of the resonant level population proportional to exp(−ℏω/T). The self-reversed resonant sodium line exhibited strong asymmetry and it was shown that under certain conditions, the luminescence spectrum of the medium may exhibit an additional broad peak on the far “red” limb of the resonance line. Calculations and measurements demonstrated that the intensity of the thermal emission of sodium vapor at this red peak is several orders of magnitude higher than that obtained from the standard theory of resonance radiation transport. This effect is arbitrarily termed an infrared “ catastrophe.” It is noted that in a solar corona plasma and in gas-discharge lamps, the far red limbs of the resonant lines may make a substantial contribution to the total luminescence intensity and in some cases, considerably exceed the intensity of the photorecombination and bremsstrahlung continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stamm, B. Talin, E. L. Pollock, and C. A. Iglesias, Phys. Rev. A 34, 4144 (1986).

    Article  ADS  Google Scholar 

  2. A. Calisti, F. Khelfaoui, R. Stamm, and B. Talin, in Spectral Line Shapes, Vol. 6, edited by L. Frommhold and J. W. Kato (AIP Press, New York, 1990), p. 3.

    Google Scholar 

  3. F. Khelfaoui, A. Calisti, R. Stamm, and B. Talin, ibid, p. 102.

    Google Scholar 

  4. A. Calisti, R. Stamm, and B. Talin, Europhys. Lett. 4, 1003 (1987).

    ADS  Google Scholar 

  5. A. V. Anufrienko, A. L. Godunov, A. V. Demura et al., Zh. Éksp. Teor. Fiz. 98, 1304 (1990) [Sov. Phys. JETP 71, 728 (1990)].

    ADS  Google Scholar 

  6. A. V. Anufrienko, A. E. Bulyshev, A. L. Godunov et al., Zh. Éksp. Teor. Fiz. 103, 417 (1993) [JETP 76, 219 (1993)].

    Google Scholar 

  7. A. E. Bulyshev, A. V. Demura, V. S. Lisitsa et al., Zh. Éksp. Teor. Fiz. 108, 212 (1995) [JETP 81, 113 (1995)].

    Google Scholar 

  8. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Consultants Bureau, New York. 1987) [Russ. original, Nauka, Moscow, 1982].

    Google Scholar 

  9. L. A. Apresyan and Yu. A. Kravtsov, Theory of Radiative Transfer [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  10. Yu. K. Zemtsov and A. N. Starostin, Zh. Éksp. Teor. Fiz. 103, 345 (1993) [JETP 76, 186 (1993)].

    Google Scholar 

  11. Yu. K. Zemtsov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 110, 1654 (1996) [JETP 83, 909 (1996)].

    Google Scholar 

  12. Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostin et al., JETP Lett. 65, 13 (1997).

    ADS  Google Scholar 

  13. Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostin et al., JETP Lett. 65, 839 (1997).

    ADS  Google Scholar 

  14. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon Press, Oxford, 1973) [Russ. original, Fizmatgiz, Moscow, 1966].

    Google Scholar 

  15. A. V. Phelps, Tunable Gas Laser Utilizing Ground State Dissociation, JILA Report No. 110 (University of Colorado, Boulder, CO, 1972).

    Google Scholar 

  16. G. York and A. Gallagher, Power Gas Laser on Alkali-Dimers A-X Band Radiation, JILA Report No. 110 (University of Colorado, Boulder, CO, 1974).

    Google Scholar 

  17. D. Mihalas, Stellar Atmospheres, 2nd ed. (Freeman, San Francisco, 1978) [Russ. transl., Mir, Moscow, 1982].

    Google Scholar 

  18. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1964)].

    Google Scholar 

  19. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics [Pergamon Press, Oxford, 1981) [Russ. original, Nauka, Moscow, 1979].

    Google Scholar 

  20. B. A. Veklenko and G. B. Tkachuk, Opt. Spektrosk. 38, 1132 (1975) [Opt. Spectrosc. 38, 653 (1975)].

    Google Scholar 

  21. V. A. Makhrov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 97, 1114 (1990) [Sov. Phys. JETP 70, 623 (1990)].

    ADS  Google Scholar 

  22. V. M. Galitskii and V. V. Yakmets, Zh. Éksp. Teor. Fiz. 51, 957 (1966) [Sov. Phys. JETP 24, 637 (1967)].

    Google Scholar 

  23. V. A. Kas’yanov and A. N. Starostin, Zh. Éksp. Teor. Fiz. 48, 295 (1965) [Sov. Phys. JETP 21, 193 (1965)].

    Google Scholar 

  24. J. Borisov and L. Frommhold, in Phenomena Induced by Intermolecular Interaction, edited by G. Birnbaum (Plenum Press, New York, 1985), p. 67.

    Google Scholar 

  25. C. G. Carrington, D. N. Stacey, and J. Cooper, J. Phys. B: Atom. Mol. Phys. 6, 417 (1973).

    Article  ADS  Google Scholar 

  26. I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981) [Russ. original, Nauka, Moscow, 1979].

    Google Scholar 

  27. R. H. Chatham, A. Gallagher, and E. L. Levis, J. Phys. B: Atom. Mol. Phys. 13, 47 (1980).

    Article  Google Scholar 

  28. Handbook of Physical Quantities [in Russian], Énergoatomizdat, Moscow (1986).

  29. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1968) [Russ. original, Nauka, Moscow, 1966, Chap. 1].

    Google Scholar 

  30. D. I. Chekhov, Dissertation for Candidate of PhysicoMathematical Science [in Russian], Moscow Institute of Physics and Technology, Moscow (1994).

    Google Scholar 

  31. M. J. Jongerius, in Spectral Line Shapes, edited by B. Wende (Berlin, 1980), p. 963.

  32. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer-Verlag, Berlin, 1985) [Russ. original, later ed., Énergoatomizdat, Moscow, 1986].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 135–154 (July 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemtsov, Y.K., Sechin, A.Y., Starostin, A.N. et al. Formation mechanisms and structure of the luminescence spectra of a dense resonant medium. J. Exp. Theor. Phys. 87, 76–86 (1998). https://doi.org/10.1134/1.558628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558628

Keywords

Navigation