Skip to main content
Log in

Über Veränderungen der Feinstrukturen von Bakterien unter der Einwirkung von Chloramphenicol

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Durch Einwirkung von Chloramphenicol (Paraxin) auf die grampositiven Staphylokokken lassen sich starke Zellwandverdickungen induzieren, die auf eine Hemmung des Wachstums der Bakterienzelle bei gleichzeitig fast ungehemmt weiterlaufender Synthese von Zellwandmaterial zurückzuführen sind.Die Masse der Wandsubstanz kann daher als Maß für den Grad der induzierten Wachstumshemmung herangezogen werden.

Durch Chloramphenicol können bei Staphylokokken auch die Membrankörper und die Chromosomenareale verändert und die Ausbildung myelinartiger Strukturen induziert werden. Eine aktive Beteiligung der Membrankörper an der Zellwandsynthese wurde wahrscheinlich gemacht.

Im Gegensatz zu den grampositiven Staphylokokken reagierten gramnegative Bakterien wie E. coli auf Chloramphenicol mit andersartigen Zellveränderungen.

Summary

By the influence of Chloramphenicol (Paraxin) on grampositive staphylococci, large cellwall thickenings can be induced, that are to be referred to a growth-restriction of the germ cell cytoplasme with an at the same time almost unrestrictedly continuing synthesis of cell wall material.The mass of the cell wall substance can therefore be referred to as a measure for the degree of induced growth restriction.

Plasmalemmasomes and chromosom areas of staphylococci may become altered by Chloramphenicol, and the formation of myelin figures may be induced. An active participation of the plasmalemmasomes on the synthesis of the cell wall substance has been made likely.

In contrast to the grampositive staphylococci gramnegative germs like E. coli react on Chloramphenicol with other cell alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Archibald, A. R., andJ. Baddiley: The teichoic acids. In: Advances in Carbohydrate Chemistry21, 323–375 (1966).

    Google Scholar 

  2. Armstrong, J. J., J. Baddiley, J. G. Buchanan, B. Carss, andG. R. Greenberg: Isolation and structure of ribitol phosphate derivates (teichoic acids) from bacterial cell walls. J. chem. Soc.1958, 4344–4354.

  3. Baddiley, J., J. G. Buchanan, F. E. Hardy, R. O. Martin, U. L. Rajbhandary, andA. R. Sanderson: The structure of ribitol teichoic acid of staphylococcus aureus. Biochim. biophys. Acta (Amst.)52, 406–407 (1961).

    Google Scholar 

  4. Baddiley, J., andA. P. Mathias: Cytidine nucleotides I. J. chem. Soc.1954, 2723–2731.

  5. Brumfitt, W., A. C. Wardlaw, andJ. T. Park: Development of lysozyme resistance in micrococcus lysodiicticus and its association with an increased O-acetyl content of the cell wall. Nature (Lond.)181, 1783–1784 (1958).

    Google Scholar 

  6. Butler, J. A. V., andG. N. Godson: “Nuclear” and cytoplasmic ribosomes in B. megaterium. Nature (Lond.)201, 876–878 (1964).

    Google Scholar 

  7. Drews, G., u.P. Giesbrecht: Der Aufbau der Bakterien- und Cyanophyceenzelle. In:H. Metzner (Hrsg.), Die Zelle. Struktur und Funktion, S. 57–106. Stuttgart 1966.

  8. Edwards, M. R.: Plasmalemma and plasmalemmosomes of Listeria monocytogenes. 8th Int. Congr. Microbiol., Montreal 1962, Abstr. p. 31.

  9. Ezekiel, D. H.: Increase in ribonucleic acid in the bacterial chromatin body during chloramphenicol treatment. J. Bact.81, 319–326 (1961).

    Google Scholar 

  10. Fitz-James, P.C.: Participation of the cytoplamsic membrane in the growth and spore formation of bacilli. J. biophys. biochem. Cytol.8, 507–528 (1960).

    Google Scholar 

  11. Fitz-James, P., andR. Hancock: The initial structural lesion of penicillin action in Bacillus megaterium. J. Cell Biol.26, 657–667 (1965).

    Google Scholar 

  12. Giesbrecht, P.: Vergleichende Untersuchungen an den Chromosomen des Dinoflagellaten Amphidinium elegans und denen der Bakterien. Zbl. Bakt., I. Abt. Orig.187, 452–497 (1962).

    Google Scholar 

  13. Giesbrecht, P.: Vergleichende elektronenmikroskopische Untersuchungen zur Zytologie und molekularen Morphologie prokaryotischer und eukaryotischer Zellen. Habil.-Schr. Freie Universität Berlin 1966.

  14. Hanawalt, P. C., O. Maaløe, D. C. Cummings, andM. Schaechter: The normal DNA replication cycle. II. J. molec. Biol.3, 156–165 (1961).

    Google Scholar 

  15. Hancock, R., andJ. T. Park: Cell-wall synthesis by staphylococcus aureus in the presence of chloramphenicol. Nature (Lond.)181, 1050–1052 (1958).

    Google Scholar 

  16. Karnovsky, M. J.: Simple methods for “staining with lead” at high pH in electron microscopy. J. biophys. biochem. Cytol.11, 729–732 (1961).

    Google Scholar 

  17. Kellenberger, E., A. Ryter, andF. Séchaud: Electron microscope study of DNA containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. biophys. biochem. Cytol.4, 671–678 (1958).

    Google Scholar 

  18. Maaløe, O., andP. C. Hanawalt: Thymine deficiency and the normal DNA replication cycle I. J. molec. Biol.3, 144–155 (1961).

    Google Scholar 

  19. Mandelstam, J., andH. J. Rogers: Chloramphenicol-resistant incorporation of amino-acids into staphylococci and cell wall synthesis. Nature (Lond.)181, 956–957 (1958).

    Google Scholar 

  20. Mandelstam, J., andH. J. Rogers: The incorporation of amino acids into the cell wall mucopeptide of staphylococci and the effect of antibiotics on this process. Biochem. J.72, 654–662 (1959).

    Google Scholar 

  21. Mitchell, P., andJ. Moyle: The positic acids of Staphylococcus aureus and other Gram-positive penicillin-sensitive bacteria: hydrolytic products and possible backbone structure. Proc. roy. Soc.27, 79–85 (1958).

    Google Scholar 

  22. Moor, H.: Die Gefrierfixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie. Z. Zellforsch.62, 546–580 (1964).

    Google Scholar 

  23. Murray, R. G. E., W. H. Francombe, andB. H. Mayall: The effect of penicillin on the structure of staphylococcal cell walls. Canad. J. Microbiol.5, 641–648 (1959).

    Google Scholar 

  24. Nakada, D.: Involvement of newly formed protein in the synthesis of deoxyribonucleic acid. Biochim. biophys. Acta (Amst.)44, 241–244 (1960).

    Google Scholar 

  25. Park, J. T.: Uridine-5-pyrophosphate derivatives. I. Isolation from staphylococcus aureus. II. A structure common to three derivatives. III. Amino-acid containing derivatives. J. biol. Chem.194, 877–885, 897–904 (1952).

    Google Scholar 

  26. Park, J. T., andJ. L. Strominger: Mode of action of penicillin. Science125, 99–101 (1957).

    Google Scholar 

  27. Pelzer, H.: Zellwandstruktur bei Bakterien. In:T. Wieland undG. Pfleiderer (edit.), Molekularbiologie, p. 147–162. Frankfurt 1967.

  28. Salton, M. R. J.: The bacterial cell wall. Amsterdam 1964.

  29. Strange, R. E.: The structure of an amino sugar present in certain spores and bacterial cell walls. Biochem. J.64, 23 P (1956).

  30. Vazquez, D.: The mode of action of chloramphenicol and related antibiotics. In:B. A. Newton, andP. E. Reynolds (edit.), Biochemical studies of antimicrobial drugs. 16th Sympos. Soc. Gen. Microbiol., p. 169–191 (1966).

  31. Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol.4, 475–478 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Durchgeführt mit Unterstützung der C. F. Boehringer & Söhne GmbH Mannheim-Waldhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesbrecht, P., Ruska, H. Über Veränderungen der Feinstrukturen von Bakterien unter der Einwirkung von Chloramphenicol. Klin Wochenschr 46, 575–582 (1968). https://doi.org/10.1007/BF01747836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01747836

Navigation