Skip to main content
Log in

Körperliche Aktivität und Fettstoffwechsel

Physical activity and lipid metabolism

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Studies in recent years have shown beneficial effects of physical activity on lipid metabolism. Both serum lipids and lipids in adipose tissue and in skeletal muscle are affected.

Serum triglycerides are lowered by physical training. Results concerning serum cholesterol and free fatty acids (FFA) are still controversal. The concentrations of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) are reduced and those of high density lipoproteins (HDL) are elevated. Thus LDL:HDL ratios and risk for atherosclerotic diseases are diminished. Epidemiologic studies showing a negative correlation between physical activity and coronary heart disease are congruent with these metabolic effects.

Physical training can reduce total body fat mass, and this reduction traced to a decreased fat cell size. In vitro investigations on this have implicated an impairment in lipogenesis. Methodological problems have clouded the results concerning lipolysis.

Comparing training-induced adaptive mechanisms in adipose tissue and skeletal muscle, different changes are evident. Whereas uptake and storage of lipids in adipose tissue is rather reduced, uptake and oxidation of lipids in skeletal muscle are enhanced. Thus a higher turnover of lipids in muscle lowers serum triglycerides and transport lipoproteins in trained patients with lipid disorders.

Other considerations notwithstanding, physical training is to be recommended for the reduction of VLDL and LDL triglycerides and total body fat mass. Moreover, an increase in HDL-cholesterol can be achieved.

Zusammenfassung

Untersuchungen in den letzten Jahren haben gezeigt, daß der Fettstoffwechsel durch körperliche Aktivität günstig beeinflußt wird. Diese Veränderungen betreffen sowohl die Serumlipide als auch Lipide im Fettgewebe und in der Skelettmuskulatur.

Körperliches Training führt zu einer ausgeprägten Senkung der Serumtriglyzeride. Eine Erniedrigung des Serumcholesterins und der freien Fettsäuren ist umstritten. Die Konzentrationen der „very low density“ Lipoproteine (VLDL) und der „low density“ Lipoproteine (LDL) werden vermindert, die der „high density“ Lipoproteine (HDL) vermehrt. Dadurch erniedrigt sich der LDL:HDL-Quotient und nach derzeitigen Vorstellungen das Arterioskleroserisiko. Entsprechend zeigen epidemiologische Untersuchungen eine negative Korrelation zwischen körperlicher Aktivität und koronarer Herzkrankheit.

Die Körperfettmasse kann durch körperliches Training aufgrund einer Verminderung der Fettzellgröße reduziert werden. In vitro-Untersuchungen am Fettgewebe zeigen, daß die Lipogenese auf mehreren Stufen gehemmt wird. Untersuchungsergebnisse hinsichtlich der Lipolyse sind aufgrund methodischer Probleme nicht einheitlich.

Beim Vergleich trainingsbedingter Adaptationsmechanismen im Fettgewebe und in der Skelettmuskulatur finden sich divergierende Stoffwechselveränderungen. Während im Fettgewebe Fetteinbau und Fettspeicherung eher vermindert sind, ist die Aufnahme und Oxydation von Lipiden in der Skelettmuskulatur des Trainierten beschleunigt. Dadurch kommt es bei trainierten Patienten mit Fettstoffwechselstörungen über einen beschleunigten Umsatz von Lipiden in der Muskulatur zu einer Senkung der Serumtriglyzeride und der Transportlipoproteine.

Körperliches Training kann bei Patienten empfohlen werden, bei denen eine Senkung der Triglyzeride in den VLDL und LDL, eine Erhöhung der HDL und eine Reduktion der Fettmasse wünschenswert ist, sofern keine Kontraindikationen gegen eine Bewegungstherapie bestehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Andres, R., Cader, G., Zierler, K.L.: The quantitative minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J. Clin. Invest.35, 671–682 (1956)

    Google Scholar 

  2. Askew, E.W., Huston, R.L., Plopper, C.G., Hecker, A.L.: Adipose tissue cellularity and lipolysis. Response to exercise and cortisol treatment. J. Clin. Invest.56, 521–529 (1975)

    Google Scholar 

  3. Askew, E.W., Huston, R.L., Dohm, G.L.: Effect of physical training on esterification of glycerol-3-phosphate by homogenates of liver, skeletal muscle, heart, and adipose tissue of rats. Metabolism22, 473–480 (1973)

    Google Scholar 

  4. Askew, E.W., Dohm, G.L., Doub jr. W.H., Huston, R.L., Van Natta, P.A.: Lipogenesis and glycerid synthesis in the rat: Response to diet and exercise. J. Nutr.105, 190–199 (1975)

    Google Scholar 

  5. Askew, E.W., Hecker, A.L., Coppes, V.G., Stifel, F.B.: Cyclic AMP metabolism in adipose tissue of exercise-trained rats. J. Lipid Res.19, 729–736 (1978)

    Google Scholar 

  6. Askew, E.W., Dohm, G.L., Huston, R.L., Sneed, T.W., Dowdy, R.P.: Response of rat tissue lipases to physical training and exercise. Proc. Soc. Exp. Biol. Med.141, 123–127 (1972)

    Google Scholar 

  7. Askew, E.W., Barakat, H., Kuhl, G.L., Dohm, G.L.: Response of lipogenesis and fatty acid synthetase to physical training and exhaustive exercise in rats. Lipids10, 491–496 (1975)

    Google Scholar 

  8. Bjernulf, A., Boberg, J., Fröberg, S.: Physical training after myocardial infarction. Metabolic effects during short and prolonged exercise before and after physical training in male patients after myocardial infarction. Scand. J. Clin. Lab. Invest.33, 173–185 (1974)

    Google Scholar 

  9. Björntorp, P., Berchtold, P., Grimby, G., Lindholm, B., Sanne, H., Tibblin, G., Wilhelmsen, L.: Effects of physical training on glucose tolerance, plasma insulin and lipids and on body composition in men after myocardial infarction. Acta Med. Scand.192, 439–443 (1972)

    Google Scholar 

  10. Björntorp, P., De Jounge, K., Sjöström, L., Sullivan, L.: Physical training in human obesity. II. Effects on plasma insulin in glucose-intolerant subjects without marked hyperinsulinemia. Scan. J. Clin. Lab. Invest.32, 41–45 (1973)

    Google Scholar 

  11. Björntorp, P., Holm, G., Jacobsson, B., Schiller-de Jounge, K., Lundberg, P.A., Sjöström, L., Smith, U., Sullivan, L.: Physical training in human hyperplastic obesity. IV. Effects on the hormonal status. Metabolism26, 319–328 (1977)

    Google Scholar 

  12. Borensztajn, J., Rone, M.S., Babirak, S.P., McGarr, J.A., Oscai, L.B.: Effect of exercise on lipoprotein lipase activity in rat heart and skeletal muscle. Am. J. Physiol.229, 394–397 (1975)

    Google Scholar 

  13. Brunner, D., Manelis, G., Modan, M., Levin, S.: Physical activity at work and the incidence of myocardial infarction, angina pectoris and death due to ischaemic heart disease. An epidemiological study in Israeli collective settlements (Kibbutzim). J. Chron. Dis.27, 217–222 (1974)

    Google Scholar 

  14. Campbell, D.E.: Influence of diet and physical activity on blood serum cholesterol of young men. Am. J. Clin. Nutr.18, 79–85 (1966)

    Google Scholar 

  15. Carlson, L.A., Mossfeldt, F.: Acute effects of prolonged heavy exercise on the concentration of plasma lipids and lipoproteins in man. Acta Physiol. Scand.62, 51–59 (1964)

    Google Scholar 

  16. Cassel, J., Heyden, S., Bartel, A.G., Kaplan, B.H., Tyroler, H.A., Cornoni, Hames, C.G.: Occupation and physical activity and coronary heart disease. Arch. Int. Med.128, 920–928 (1971)

    Google Scholar 

  17. Castelli, W.P.: High density lipoproteins: A new understanding of cholesterol and risk. Am. Heart Ass.'s Fourth Science Writers Forum, San Antonio, Texas, 1977

  18. Cooper, K.H., Pollock, M.L., Martin, R.P., White, S.R., Linnerud, A.C., Jackson, A.: Physical fitness levels vs selected coronary risk factors. A cross-sectional study. J.A.M.A.236, 166–169 (1976)

    Google Scholar 

  19. Enger, S.C., Herbjørnsen, K., Erikssen, J., Fretland, A.: High density lipoproteins (HDL) and physical activity: the influence of physical exercise, age and smoking on HDL-cholesterol and HDL-/total cholesterol ratio. Scand. J. Clin. Lab. Invest.37, 252–255 (1977)

    Google Scholar 

  20. Ferguson, R.J., Côté, P., Gauthier, P., Bourassa, M.G.: Changes in exercise coronary sinus blood flow with training in patients with angina pectoris. Circulation58, 41–47 (1978)

    Google Scholar 

  21. Ferguson, R.J., Petitclerc, R., Choquette, G., Chaniotis, L., Gauthier, P., Huot, R.F., Allard, C., Jankowski, L., Campeau, L.: Effect of physical training on treadmill exercise capacity, collateral circulation and progression of coronary disease. Am. J. Cardiol.34, 764–769 (1974)

    Google Scholar 

  22. Fox, S.M., Haskell, W.L.: Physical activity and the prevention of coronary heart disease. Bull N.Y. Acad. Med.44, 950–967 (1968)

    Google Scholar 

  23. Glomset, J.A.: The plasma lecitin: Cholesterol acyltransferase reaction J. Lipid Res.9, 155–167 (1968)

    Google Scholar 

  24. Havel, R.J., Naimark, A., Borchgrevink, C.V.: Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: Studies during continuous infusion of palmitate - 1 -14C. J. Clin. Invest.42, 1054–1063 (1963)

    Google Scholar 

  25. Hinkel, L.E., Carver, S.T., Stevens, M.: The frequency of asymptomatic disturbances of cardiac rhythm and conduction in middle-aged men. Am. J. Cardiol.24, 629–650 (1969)

    Google Scholar 

  26. Hoffmann, A.A., Nelson, W.R., Goss, F.A.: Effects of an exercise program on plasma lipids of senior air force officers. Am. J. Card.20, 516–524 (1967)

    Google Scholar 

  27. Holloszy, J.O., Skinner, J.S., Toro, G., Cureton, T.K.: Effects of a six month program of endurance exercise on the serum lipids of middle-aged men. Am. J. Cardiol.14, 753–760 (1964)

    Google Scholar 

  28. Holloszy, J.: Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem.242, 2278–2282 (1967)

    Google Scholar 

  29. Johnson, R.H., Walton, J.L., Krebs, H.A., Williamson, D.H.: Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet2, 452–455 (1969)

    Google Scholar 

  30. Kemmer, F.W., Berger, M., Herberg, L., Gries, F.A.: Effects of physical training on glucose tolerance and on glucose metabolism of isolated skeletal muscle in normal rats. (Abstract) Diabetologia13, 407 (1977)

    Google Scholar 

  31. Keul, J., Doll, E., Haralambie, G.: Freie Fettsäuren, Glycerin und Triglyeride im arteriellen und femoral-venösen Blut vor und nach einem vierwöchigen Training. Pflügers Arch.316, 194–204 (1970)

    Google Scholar 

  32. Kirkeby, K., Strömme, S.B., Bjerkedal, I., Hertzenberg, L., Refsum, H.E.: Effects of prolonged, strenuous exercise on lipids and thyroxine in serum. Acta Med. Scand.202, 463–467 (1977)

    Google Scholar 

  33. Koschinsky, T., Carew, T.E., Steinberg, D.: Effects of high density lipoprotein and low density lipoprotein metabolism by pig smooth muscle cells (Abstract). Circulation52, 273 (1975)

    Google Scholar 

  34. Lampman, R.M., Santinga, J.T., Hodge, M.F., Block, W.D., Flora, J.D., Bassett, D.R.: Comparative effects of physical training and diet in normalizing serum lipids in men with type IV hyperlipoproteinemia. Circulation55, 652–659 (1977)

    Google Scholar 

  35. Le Blanc, J., Boulay, M., Dulac, S., Jobin, M., Labrie, A., Rousseau-Migneron, S.: Metabolic and cardiovascular responses to norepinephrine in trained and nontrained human subjects. J. Appl. Physiol.42, 166–173 (1977)

    Google Scholar 

  36. Lehtonen, A., Viikari, J.: The effect of vigorous physical activity at work on serum lipids with a special reference to serum high-density lipoprotein cholesterol. Acta Physiol. Scand104, 117–121 (1978)

    Google Scholar 

  37. Lopez-S., A., Vial, R., Balart, L., Arroyave, G.: Effect of exercise and physical fitness on serum lipids and lipoproteins. Atherosclerosis20, 1–9 (1974)

    Google Scholar 

  38. Lopez-S., A., René, A., Bell, L., Herbert, J.A.: Metabolic effects of exercise. I. Effect of exercise on serum lipids and lipogenesis in rats. Proc. Soc. Exp. Biol. Med.148, 640–645 (1975)

    Google Scholar 

  39. Malinow, M.R., McLaughlin, P., Pierovich, I.: Muscular activity and the degradation of cholesterol by the liver. Atherosclerosis15, 153–162 (1972)

    Google Scholar 

  40. Miller, N.E., Miller, G.J.: High density lipoprotein and atherosclerosis. Lancet1, 16–19 (1975)

    Google Scholar 

  41. Molé, P.A., Oscai, L.B., Holloszy, J.O.: Adaptation of muscle to exercise. Increase in the levels of palmityl CoA synthetase, carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidize fatty acids. J. Clin. Invest.50, 2323–2330 (1971)

    Google Scholar 

  42. Morgan, T.E., Short, F.A., Cobb, L.A.: Effect of long-term exercise on skeletal muscle lipid composition. Am. J. Physiol.216, 82–86 (1969)

    Google Scholar 

  43. Morris, J.N., Heady, J.A., Raffle, P.A.B., Roberts, C.G., Parks, J.W.: Coronary heart disease and physical activity of work. Lancet2, 1053–1057 (1953)

    Google Scholar 

  44. Naito, H.K., Griffith, D.R.: Change in rats serum triglyceride concentration with graded levels of thyroxine and exercise. Proc. Soc. Exp. Biol. Med.154, 372–376 (1977)

    Google Scholar 

  45. Nikkilä, E.A., Taskinen, M.R., Rehunen, S., Härkönen, M.: Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: Relation to serum lipoproteins. Metabolism27, 1661–1671 (1978)

    Google Scholar 

  46. Oscai, L.B., Patterson, J.A., Bogard, D.L., Beck, R.J., Rothermel, B.L.: Normalization of serum triglycerides and lipoprotein electrophoretic patterns by exercise. Am. J. Card.30, 775–780 (1972)

    Google Scholar 

  47. Owens, J.L., Fuller, E.O., Nutter, D.O., Digirolamo, M.: Influence of moderate exercise on adipocyte metabolism and hormonal responsiveness. J. Appl. Physiol.43, 425–430 (1977)

    Google Scholar 

  48. Paffenbarger, R.S., Hale, W.E.: Work activity and coronary heart mortality. N. Engl. J. Med.292, 545–550 (1975)

    Google Scholar 

  49. Palm, J.: Der sanfte Weg zur Fitneß. Dtsch. Ärztebl.75, 2915–2993 (1978)

    Google Scholar 

  50. Palmer, W.K., Tipton, C.M.: Effect of training on adipocyte glucose metabolism and insulin responsiveness. Fed. Proc.33, 1964–1968 (1974)

    Google Scholar 

  51. Parizková, J., Stanková, L.: Influence of physical activity on a treadmill on the metabolism of adipose tissue in rats. Br. J. Nutr.18, 325–331 (1964)

    Google Scholar 

  52. Parizková, J.: Impact of age, diet and exercise on man's body composition. Ann. N.Y. Acad. Sci.110, 661–674 (1963)

    Google Scholar 

  53. Paul, P.: Effects of long lasting physical exercise and training on lipid metabolism. In: Metabolic adaptation to polonged physical exercise. Howald, H., Poortsmans, J.R. (eds.), p. 156–193. Basel: Birkhäuser 1975

    Google Scholar 

  54. Rosing, D.R., Brakman, P., Redwood, D.R.: Blood fibrinolytic activity in man: Diurnal variation and the response to varying intensities of exercise. Circ. Res.27, 171–184 (1970)

    Google Scholar 

  55. Roskamm, H., Samek, L.: Die Bedeutung des Sports in der Therapie der koronaren Herzerkrankung. Dtsch. Ärztebl. 3039–3044 (1978)

  56. Sannerstedt, R., Wasir, H., Henning, R., Werköl, L.: Systematic hemodynamics in mild arterial hypertension before and after physical training. Clin. Sci. Mol. Med. (Suppl.)45, 45–49 (1973)

    Google Scholar 

  57. Schettler, G., Silberberg, N.: Fettstoffwechsel und körperliches Training mit besonderer Berücksichtigung der koronaren Herzkrankheit. Therapiewoche27, 9072–9092 (1977)

    Google Scholar 

  58. Shepherd, R.E., Sembrowich, W.L., Green, H.E., Gollnick, Ph.D.: Effect of physical training on control mechanisms of lipolysis in rat fat cell ghosts. J. Appl. Physiol.42, 884–888 (1977)

    Google Scholar 

  59. Simko, V., Ondreicka, R., Chorvathova, V., Bobek, P.: Effect of long-term physical exercise on bile sterols, faecal fat and fatty acid metabolism in rats. J. Nutr.100, 1331–1340 (1970)

    Google Scholar 

  60. Simonelli, C., Eaton, R.P.: Reduced triglyceride secretion: A metabolic consequence of chronic exercise. Am. J. Physiol.234, E221-E227 (1978)

    Google Scholar 

  61. Taylor, A.W., Cary, S., McNulty, M., Garrod, J., Secord, D.C.: Effects of food restriction and exercise upon the deposition and mobilization of energy stores in the rat. J. Nutr.104, 218–222 (1974)

    Google Scholar 

  62. Wahren, J., Felig, P., Hagenfeldt, L.: Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologia14, 213–222 (1978)

    Google Scholar 

  63. Watt, E.W., Wiley, J., Fletcher, G.F.: Effect of dietary control and exercise training on daily food intake and serum lipids in postmyocardial infarction patients. Am. J. Clin. Nutr.29, 900–904 (1976)

    Google Scholar 

  64. Wirth, A., Neermann, G., Eckert, W., Heuck, C.C., Weicker, H.: Metabolic response to heavy physical exercise before and after a 3-months-training period. Eur. J. Appl. Physiol.41, 51–59 (1979)

    Google Scholar 

  65. Wirth, A., Holm, G., Lindstedt, G., Lundberg, P.A., Björntorp, P.: Thyroid hormones in the physically trained rat. J. Appl. Physiol. (im Druck)

  66. Wood, P.D., Haskell, W., Klein, H., Lewis, S., Stern, M.P., Farquhar, J.W.: The distribution of plasma lipoproteins in middle-aged male runners. Metabolism25, 1249–1257 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, A., Schlierf, G. & Schettler, G. Körperliche Aktivität und Fettstoffwechsel. Klin Wochenschr 57, 1195–1201 (1979). https://doi.org/10.1007/BF01489246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01489246

Key words

Schlüsselwörter

Navigation