Skip to main content
Log in

Low molecular solutes and the blood cerebrospinal fluid barrier

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

An attempt is made to evaluate those portions of low molecular hydrophilic solutes that obey apparent passive transfer principles at the blood cerebrospinal fluid (CSF) barrier under steady state conditions. Twenty-four electrolytes, metabolites, and amino acids are determined in serum and CSF obtained simultaneously. The correlation found between the serum/CSF concentration ratios and the molecular radii of most compounds is indicative of the prevalence of passive transfer processes in CSF formation, as has been already demonstrated for proteins. The level of some constituents in the primary filtrate may be secondarily increased by influx from the adjacent extracellular space, e.g. glutamine and creatinine, or decreased by specific uptake from the CSF compartment, e.g. glycine. The CSF levels of all compounds are dependent upon the actual state of the blood CSF barrier as evaluated by the serum/CSF concentration ratios of albumin and α2-macroglobulin. The results do not support the assumption that CSF may be used to test the permeability state of the blood brain barrier propery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aprison MH, Nadi NS (1978) Glycine: Inhibition from the sacrum to the medulla. In: Fonnum F (ed). Plenum Press, New York, pp 531–570

    Google Scholar 

  • Bito LZ, Davson H, Fenstermacher JD (1978) The ocular and cerebrospinal fluids. Academic Press, London

    Google Scholar 

  • Bohuon C (1962) Microdosage du magnesium dans divers milieux biologiques. Clin Chim Acta 7:811–817

    Google Scholar 

  • Bradbury M (1979) The concept of a blood-brain-barrier. Wiley and Sons, Chichester

    Google Scholar 

  • Bradbury MWB, Stubbs J, Hughes IE, Parker P (1963) The distribution of potassium, sodium chloride and urea between lumbar cerebrospinal fluid and blood serum in human subjects. Clin Sci 25:97–105

    Google Scholar 

  • Bradford HF, de Belleroche JS, Ward HK (1978) On the metabolic and intrasynaptic origin of amino acid transmitters. In: Fonnum F (ed). Plenum Press, New York, pp 367–377

    Google Scholar 

  • Brightman MW (1965) The distribution within the brain of ferritin injected into the cerebrospinal fluid compartment. Am J Anat 117:193–219

    Google Scholar 

  • Cohen H (1924) The inorganic phosphorus content of the cerebrospinal fluid. Q J Med 17:289–301

    Google Scholar 

  • Cotman CW, Hamberger A (1978) Glutamate as a CNS neurotransmitter: Properties of release, inactivation and biosynthesis. In: Fonnum F (ed). Plenum Press, New York, pp 379–412

    Google Scholar 

  • Cremer JE, Sarna GS, Teal HM, Cunningham VJ (1978) Amino acid precursors: their transport into brain and initial metabolism. In: Fonnum F (ed). Plenum Press, New York, pp 669–689

    Google Scholar 

  • Crone C (1965) Facilitated transfer of glucose from blood into brain tissue. J Physiol 181:103–113

    Google Scholar 

  • Cserr HE (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    Google Scholar 

  • Davson H (1972) The blood-brain-barrier. In: Bourne GH (ed) The structure and function of nervous tissue, vol IV. Academic Press, New York, pp 321–445

    Google Scholar 

  • Dörner K (1975) Fluorimetrische Calciumbestimmung durch EGTA-Titration. Ärztl Lab 21:48–57

    Google Scholar 

  • Evans CAN, Reynolds JM, Reynolds ML, Saunders NR, Segal MB (1974) The development of a blood-brain-barrier mechanism in foetal sheep. J Physiol 238:371–386

    Google Scholar 

  • Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52:1158–1164

    Google Scholar 

  • Felgenhauer K (1980) Protein filtration and secretion at human body fluid barriers. Pflügers Arch 384:9–17

    Google Scholar 

  • Fenstermacher JD, Patlak CS (1975) The exchange of material between cerebrospinal fluid and brain. In: Cserr HF et al. (eds) Fluid environment of the brain. Academic Press, New York, pp 201–213

    Google Scholar 

  • Ferguson RK, Woodbury DM (1969) Penetration of14C-Inulin and14C-Sucrose into brain, cerebrospinal fluid and skeletal muscle of developing rats. Exp Brain Res 7:181–194

    Google Scholar 

  • Fischer-Williams M (1976) Recent advances in the study of cerebrospinal fluid. Practitioner 217:108–115

    Google Scholar 

  • Fonnum F (1978) Amino acids as chemical transmitters. Plenum Press, New York

    Google Scholar 

  • Forster RE (1971) The transport of water in erythrocytes. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol II. Academic Press, New York, pp 91–121

    Google Scholar 

  • Gindler EM, Ishizaki RT (1969) Rapid seminicro colorimetric determination of phosphorus in serum and nonionic surfactants. Clin Chem 15:807–813

    Google Scholar 

  • Greenstein JP, Winitz M (1961) Chemistry of the Amino Acids, vol I. Wiley, New York

    Google Scholar 

  • Hamberger A, Sellström Å, Weiler ChT (1978) Glial cells and amino acid transmitters. In: Fonnum F (ed). Plenum Press, New York, pp 653–662

    Google Scholar 

  • Hamilton PB (1963) Ion exchange chromatography of amino acids. A single column, high resolving, fully automated procedure. Anal Chem 35:2055–2062

    Google Scholar 

  • Hille B (1975) Ionic selectivity of Na and K channels of nerve membranes. In: Eisenmann G (ed) Membranes, vol III. Dekker, New York, pp 255–323

    Google Scholar 

  • Höfer M (1977) Transport durch biologische Membranen. Verlag Chemie, Weinheim New York

    Google Scholar 

  • Horak E, Sunderman jr FW (1972) Measurements of serum urea nitrogen by a conductivimetric urease assay. Ann Clin Lab Sci 2:425–430

    Google Scholar 

  • Iversen LL, Dick F, Kelly JS, Schon F (1975) Uptake and localisation of transmitter amino acids in the nervous system. In: Berl S, Clarke DD, Schneider D (eds) Metabolic compartmentation and neurotransmission. Plenum Press, New York

    Google Scholar 

  • Jost W (1964) Fundamental aspects of diffusion processes. Angew Chemie 3:713–718

    Google Scholar 

  • Katzmann R (1976) Blood-Brain-CSF-Barriers. In: Siegel GJ et al. (eds) Basic neurochemistry. Little, Brown and Co, Boston, pp 414–428

    Google Scholar 

  • Landis EM, Pappenheimer JR (1963) Exchange of substances through capillary walls. In: Hamilton WF, Dow P (eds) Handbook of physiology, vol 2. Williams and Wilkins, Baltimore, pp 961–1034

    Google Scholar 

  • Lee JC (1971) Evaluation in the concept of the blood-brain-barrier function. Prog Neuropathol 1:84–145

    Google Scholar 

  • Levin E, Nogneira GJ, Argiz CAG (1966) Ventriculo-cisternal perfusion of amino acids in cat brain. J Neurochem 13:761–767

    Google Scholar 

  • Liappis N, Jäkel A, Bantzer P (1977) Verhalten der freien Aminosäuren im Liquor cerebrospinalis von Kindern. Klin Paediatr 189:155–160

    Google Scholar 

  • Maker HS, Clarke DD, Lajtha AL (1976) Intermediary metabolism of carbohydrates and amino acids. In: Siegel GJ et al. (eds) Basic neurochemistry. Little, Brown and Co, Boston, pp 279–307

    Google Scholar 

  • Mayer St, Maichel RR, Brodie BB (1959) Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J Pharmacol 127:205–211

    Google Scholar 

  • McGale EHF, Peye IF, Stonier C, Hutchinson EC, Aber GM (1977) Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentration in normal individuals. J Neurochem 29:291–297

    Google Scholar 

  • Oldendorf WH (1971) Brain uptake of radio labeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639

    Google Scholar 

  • Perry TL, Hansen S, Kennedy J (1975) CSF amino acids and plasma-CSF amino acid ratio in adults. J Neurochem 24:587–589

    Google Scholar 

  • Plenert W, Heine W (1973) Normalwerte. Verlag Volk und Gesundheit, Berlin

    Google Scholar 

  • Rall DP, Oppelt WW, Patlak CS (1962) Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci 2:43–48

    Google Scholar 

  • Rapoport StJ (1976) Blood-brain-barrier in physiology and medicine. Raven Press, New York

    Google Scholar 

  • Rauen HM (1964) Biochemisches Taschenbuch. Springer, Berlin Göttingen Heidelberg New York

    Google Scholar 

  • Renkin EM (1955) Filtration, diffusion and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    Google Scholar 

  • Schliep G, Felgenhauer K (1978) Serum-CSF protein gradients, the blood-CSF barrier and the local immune response. J Neurol 218:77–96

    Google Scholar 

  • Stevens JF (1971) Determination of glucose by an automatic analyzer. Clin Chim Acta 32:199–205

    Google Scholar 

  • Yudilevich DL, De Rose N, Sepulveda FV (1972) Facilitated transport of amino acids through the blood-brain-barrier of the dog studied in a single capillary circulation. Brain Res 44:569–578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felgenhauer, K., Liappis, N. & Nekic, M. Low molecular solutes and the blood cerebrospinal fluid barrier. Klin Wochenschr 60, 1385–1392 (1982). https://doi.org/10.1007/BF01716243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716243

Key words

Navigation