Skip to main content
Log in

Angiotensin-Conversions-Enzym-Hemmung: Direkte und indirekte renale Mechanismen

Inhibition of angiotensin converting enzyme: Direct and indirect renal mechanisms

  • Zum Geleit
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The introduction of angiotensin-converting-enzyme (ACE)-inhibitors into the analysis of the renin-angiotensin system (RAS) had broadened our knowledge of the integral role of renin and the kidney in circulatory homeostasis and has provided a pathophysiologically based concept for the treatment of hypertension. When the RAS is activated, as it is when sodium is restricted, the renal blood supply shows the most striking vasodilatation among vascular beds assessed after ACE-inhibition. Sodium excretion rises, there is a fall in blood-pressure, and plasma concentrations of angiotensin II (AII) and aldosterone are reduced. Conversely, with sodium loading the hemodynamic and hormonal effects of ACE-inhibitors are small. In 50–60% of normal or high-renin patients with essential hypertension ACE-inhibitors induce a potentiated acute renal response: renal blood flow and sodium excretion increase more than they do in the remainder of the hypertensives or in normal subjects. The responders of the hypertensive patients fail to increase renal blood flow or to enhance renal vascular responsiveness to infused AII when they shift from a low to a high sodium intake. The altered renal response of these “sodium-sensitive” hypertensives could be related to local activity of the RAS which is insufficiently suppressed by sodium loading. ACE-inhibition reverses this failure of the renal blood supply to respond to sodium loading. Kidneys of spontaneously hypertensive rats and the renin-rich kidney of Goldblatt-hypertensive rats show an increased tubulo glomerular (TG) feedback response as compared to normal kidneys. The change in TG-feedback response might be expected to contribute to the inability of the hypertensive kidney to respond adequately to sodium loading. ACE-inhibition reduces TG-feedback sensitivity. In renal artery stenosis glomerular capillary pressure tends to be maintained by an AII mediated rise in postglomerular resistance. Suppression of AII by ACE-inhibition reduces efferent vascular tone and thus filtration rate. There is a potential for interaction of ACE-inhibitors with the kallikrein and prostaglandin pathways as well as with the sympathetic nervous system and endogenous opioids. This may modify the renal and blood pressure responses to these compounds.

Zusammenfassung

Die Einführung von Angiotensin-Conversions-Enzym(ACE)-Hemmern in die Analyse der Funktion des Renin-Angiotensin-Systems (RAS) hat die Kenntnisse über die integrale Rolle von Renin und der Niere in der Kreislaufhomöostase erweitert und ein pathophysiologisch begründetes Therapiekonzept bei arterieller Hypertension ermöglicht. Nach Aktivierung des RAS durch Natriumrestriktion steigen unter ACE-Hemmung die renale Durchblutung und die Na+-Ausscheidung an, der Blutdruck fällt ab. Die Plasma-Angiotensin II (AII)- und Aldosteronkonzentrationen sind supprimiert. Unter Na+-Beladung sind die hämodynamischen und hormonalen Effekte geringer. Bei essentieller Hypertension führen ACE-Hemmer in 50 bis 60% der normo- und hochreninämischen Patienten zu einem stärkeren Anstieg der renalen Durchblutung und der Na+-Ausscheidung sowie zu einem größeren Blutdruckabfall als bei den übrigen Hypertonikern und bei Normotensiven. Nach Na+-Beladung nimmt bei den auf ACE-Hemmer ansprechenden Hypertonikern die renale Durchblutung nicht zu, die renovaskuläre Antwort auf AII ist vermindert und der Blutdruck steigt deutlich an. Der veränderten renalen Antwort dieser „natriumsensitiven“ Hypertoniker könnte eine erhöhte intrarenale, durch Na+-Zufuhr nicht adäquat supprimierbare AII-Konzentration zugrunde liegen. Durch ACE-Hemmung wird die Störung behoben. In der Niere von spontan-hypertensiven Ratten und in der reninreichen Niere von Goldblatt-Ratten ist die tubulo-glomeruläre (TG) Feedback-Antwort des Einzelnephrons gesteigert. Diese Störung könnte an der Unfähigkeit der Hochdruckniere, Natrium adäquat auszuscheiden, beteiligt sein. ACE-Hemmung reduziert die Sensitivität des TG-Feedbacks. Bei Nierenarterienstenose wird das Filtrat aufgrund eines AII-vermittelten erhöhten Tonus des Vas efferens aufrechterhalten. AII-Suppression durch ACE-Hemmung senkt den efferenten Gefäßtonus, das Filtrat fällt. Interaktionen der ACE-Hemmer mit dem Kallikrein-Kinin- und Prostaglandinsystem sowie mit dem sympathischen Nervensystem und dem Abbau von endogenen Opioiden könnten die renale Antwort und die Blutdruckreaktion modifizieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Arendshorst WJ, Beierwaltes WH (1979) Renal and nephron hemodynamics in spontaneously hypertensive rats. Am J Physiol 236:F246–251

    Google Scholar 

  2. Arregiu A, Lee CM, Emson PC, Iversen LL (1979) Separation of human brain angiotensin converting enzyme from enkephalin degrading activity. Eur J Pharmacol 59:141–144

    Google Scholar 

  3. Atkinson AB, Brown JJ, Cumming AMM, Fraser R, Lever AF, Leckie BJ, Morton JJ, Robertson JIS, Davies DL (1982) Captopril in the management of hypertension with renal artery stenosis: Its long-term effect as a predictor of surgical outcome. Am J Cardiology 49:1460–1466

    Google Scholar 

  4. Bakhle YS (1968) Conversion of angiotensin I to angiotensin II by cell-free extracts of dog lung. Nature 220:919–921

    Google Scholar 

  5. Bengis RG, Coleman TG, Young DB, McCaa RE (1978) Long-term blockade of angiotensin formation in various normotensive and hypertensive rat models using converting enzyme inhibitor (SQ 14,225). Circ Res 43:1–45

    Google Scholar 

  6. Björck S, Herlitz H, Nyberg G, Granerus G, Aurell M (1983) Effect of captopril on renal hemodynamics in the treatment of resistant renal hypertension. Hypertension 5:III-152–153

    Google Scholar 

  7. Blantz RC, Konnen KS (1977) Relation of distal tubule delivery rate and reabsorptive rate to nephron filtration. Am J Physiol 233:F315-F324

    Google Scholar 

  8. Brunner HR, Gavras H, Waeber B, Kershaw GR, Turini GA, Vukovich RA, McKinstry DN (1979) Oral angiotensin-converting enzyme inhibitor in long-term treatment of hypertensive patients. Ann Intern Med 90:19–25

    Google Scholar 

  9. Carretero OA, Miyazaki S, Scicli AG (1981) Role of kinins in the acute antihypertensive effect of the converting enzyme inhibitor, captopril. Hypertension 3:18–22

    Google Scholar 

  10. Clappison BH, Anderson WP, Johnston CI (1981) Renal hemodynamics and renal kinins after angiotensin-converting enzyme inhibition. Kidney Int 20:615–620

    Google Scholar 

  11. Clough DP, Collis MG, Conway J, Hatton R, Keddie JR (1982) Interaction of angiotensin-converting enzyme inhibitors with the function of the sympathetic nervous system. Am J Cardiology 49:1410–1414

    Google Scholar 

  12. Cody jr RJ, Tarazi RC, Bravo EL, Fouad FM (1978) Haemodynamics of orally-active enzyme inhibitor (SQ 14225) in hypertensive patients. Clin Sci 55:453–459

    Google Scholar 

  13. Curtis JJ, Luke RG, Whelchel JD, Diethelm AG, Jones P, Dustan HP (1983) Inhibition of angiotensin-converting enzyme in renal-transplant recipients with hypertension. New Engl J Med 308:377–381

    Google Scholar 

  14. Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16:5484–5491

    Google Scholar 

  15. de Leeuw D, Navis GJ, Donker AJM, de Jong PE (1983) The angiotensin converting enzyme inhibitor enalapril and its effects on renal function. J Hypertension 1:93–97

    Google Scholar 

  16. Dev B, Drescher C, Schnermann J (1974) resetting of tubuloglomerular feedback sensitivity by dietary salt intake. Pflügers Arch 346:263–267

    Google Scholar 

  17. Dunn FG, Oigman W, Ventura HO, Messerli FH, Kobrin I, Frohlich ED (1984) Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol 53:105–108

    Google Scholar 

  18. Edwards RM (1982) Response of isolated renal microvessels to intraluminal pressure, norepinephrine and angiotensin II. Abstracts of the 15th Annual Meeting of the American Society of Nephrology, Chicago, p 150

  19. Engel SL, Shaeffer TR, Waugh MH, Rubin B (1973) Effects of the nonapeptide SQ 20,881 on blood pressure of rats with experimental renovascular hypertension. Proc Soc Exp Biol Med 143:483–487

    Google Scholar 

  20. Erdös EG (1976) Conversion of angiotensin I to angiotensin II. Amer J Med 60:719–759

    Google Scholar 

  21. Ferreira SH (1965) A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br J Pharmacol 24:163–169

    Google Scholar 

  22. Forster RP, Maes JP (1947) Effect of experimental neurogenic hypertension on renal blood flow and glomerular infiltration rates in inctact denervated kidneys of unanesthetized rabbits with adrenal glands demedullated. Am J Physiol 150:534–540

    Google Scholar 

  23. Galler M, Backenroth R, Folkert VN, Schlondorff D (1982) Effect of converting enzyme inhibitors on prostaglandin synthesis by isolated glomeruli and aortic strips from rats. J Pharmacol Exp Ther 220:23–28

    Google Scholar 

  24. Gertz KH, Mangos JA, Braun G, Pagel HD (1966) Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflügers Arch 288:369–374

    Google Scholar 

  25. Groel JT, Herlitz H, Nyberg G, Granerus G, Aurell M (1983) Long-term antihypertensive therapy with captopril. Hypertension 5:III 145–151

    Google Scholar 

  26. Gunther S, Gimbrone MA, Jr, Alexander RW (1980) Regulation by angiotensin II of receptors in resistance blood vessels. Nature (Lond) 287:230–232

    Google Scholar 

  27. Hall JE, Guyton AC, Cowley AW Jr (1977) Dissociation of renal blood flow and filtration rate autoregulation by renin depletion. Am J Physiol 232:F215–221

    Google Scholar 

  28. Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE, Trippodo NC (1977) Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol 233:F366–372

    Google Scholar 

  29. Havelka J, Vetter H, Studer A, Greminger P, Lüscher Th, Wollnik S, Siegenthaler W, Vetter W (1982) Acute and chronic effects of the angiotensin-converting-enzyme inhibitor captopril in severe hypertension. Am J Cardiol 49:1467–1474

    Google Scholar 

  30. Heavey DJ, Reid JL (1978) The effect of SQ 14225 on baroreceptor reflex sensitivity in conscious normotensive rabbits. Brit J Pharmacol 64:389–400

    Google Scholar 

  31. Helmchen U, Gröne HJ, Kirchertz EJ, et al. (1982) Contrasting renal effects of different antihypertensive agents in hypertensive rats with bilaterally constricted renal arteries. Kidney Int 12:198–205

    Google Scholar 

  32. Hollenberg NK, Chenitz WR, Adams DF, Williams GH (1974) Reciprocal influence of salt intake on adrenal glomerulosa and renovascular responses to angiotensin II in normal man. J Clin Invest 54:34–42

    Google Scholar 

  33. Hollenberg NK, Swartz SL, Passan DR, Williams GH (1979) Increased glomerular filtration rate following converting enzyme inhibition in essential hypertension. New Engl J Med 301:9–12

    Google Scholar 

  34. Hollenberg NK, Meggs LG, Williams GH, Katz J, Garnic JD, Harrington DP (1981) Sodium intake and renal responses to captopril in normal and in essential hypertension. Kidney (NY) 20:240–245

    Google Scholar 

  35. Hricik DE, Browning PJ, Kopelman R, Goorno WE, Madias NE, Dzau VJ (1983) Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenoses or renal artery stenosis in a solitary kidney. New Engl J Med 308:373–376

    Google Scholar 

  36. Imai Y, Abe K, Seino M, Haruyama T, Tajiama J, Sato M, Goto T, Hiwatari M, Kasai Y, Yoshinaga K, Sekino H (1982) Attenuation of pressure response to norepinephrine and vasopressin by captopril in human subjects. Hypertension 4:444–451

    Google Scholar 

  37. Johnston CI, Millar JA, McGrath BP, Matthews PG (1979) Long-term effects of captopril (SQ 14225) on blood pressure and hormone levels in essential hypertension. Lancet 2:493–496

    Google Scholar 

  38. Johnston CI, Clappison BH, Anderson WP, Yasujima M (1982) Effect of angiotensin-converting enzyme inhibition on circulating and local kinin levels. Am J Cardiol 49:1401–1404

    Google Scholar 

  39. Kimbrough HM, Vaughan ED, Carey RM, Ayers CR (1977) Effect of intrarenal angiotensin II blockade on renal function in conscious dogs. Circ Res 40:174–177

    Google Scholar 

  40. Kirchertz EJ, Scheler F (1982) Captopril bei Nierenarterienstenosen und Niereninsuffizienz. Internist (Berl) 23:237–240

    Google Scholar 

  41. Levens NR, Peach MJ, Casey RM (1981) Role of the intrarenal renin-angiotensin system in the control of renal function. Circ Res 48:157–167

    Google Scholar 

  42. McGiff JC, Terragno NA, Malik KU, Lonigro AJ (1972) Release of a prostaglandin E-like substance from canine kidney by bradykinin. Circ Res 31:36–43

    Google Scholar 

  43. McGregor GA, Markandu HD, Roulston JE, Jones JC, Morton JJ (1981) Maintenance of blood pressure by the renin-angiotensin system in normal man. Nature 291:329–331

    Google Scholar 

  44. Meggs LG, Hollenberg NK (1980) Converting enzyme inhibition and the kidney. Hypertension 2:551–557

    Google Scholar 

  45. Moore LC, Schnermann J, Yarimizu S (1979) Feedback mediation of SNGFR autoregulation in hydropenic and DOCA- and salt-loaded rats. Am J Physiol 237:F63-F74

    Google Scholar 

  46. Morton JJ, Tree M, Casals-Stenzel J (1982) Effect of infused captopril on blood pressure and the renin-angiotensin-aldosterone system in normal dogs subjected to varying sodium balance. Am J Cardiol 49:1395–1400

    Google Scholar 

  47. Najsletti A, Colina-Chourio J, McGiff JC (1975) Disappearnance of bradykinin in the renal circulation of dogs. Effects of kininase inhibition. Circ Res 37:59–65

    Google Scholar 

  48. Ondetti MA, Williams NJ, Sabo EF, Pluščec J, Weaver ER, Kocy O (1971) Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Biochemistry 10:4033–4039

    Google Scholar 

  49. Otsuka Y, Carretero OA, Albertini R, Binia A (1979) Angiotensin and sodium balance: Their role in chronic two-kidney Goldblatt hypertension. Hypertension 1:389

    Google Scholar 

  50. Overlack A, Stumpe KO, Kühnert M, Heck I (1980) Altered blood pressure and renin responses to converting enzyme inhibition after aprotinin-induced kallikrein-kinin system blockade. Clin Sci 59:129–132

    Google Scholar 

  51. Palla R, Marchitiello ME, Sassano P, Salvetti A (1982) Effect of captopril on renal function in patients with essential hypertension. Am J Cardiol 49:1577–1579

    Google Scholar 

  52. Patchett AA, Harris E, Tristram EW, Wyvratt MJ, Wu MT, Taub D, Peterson ER, Ikeler TJ, tenBroeke J, Payne LG, Ondeyka DL, Thorsett ED, Greenlee WJ, Lohr NS, Hoffsommer RD, Joshua H, Ruyle WV, Rothrock JW, Aster SD, Maycock AL, Robinson FM, Hirschmann R, Sweet CS, Ulm EH, Gross DM, Vassil TC, Stone CA (1980) A new class of angiotensin-converting enzyme inhibitors. Nature 288:280–283

    Google Scholar 

  53. Persson AEG, Muller-Suur R, Selen G (1976) Peritubular capillary oncotic pressure as a modifier of tubuloglomerular feedback. Kidney Int 19:595–603

    Google Scholar 

  54. Persson AEG, Schnermann J, Wright FS (1979) Modification of feedback influence in glomerular filtration rate by acute isotonic extracellular volume expansion. Pflügers Arch 381:99–105

    Google Scholar 

  55. Persson AEG, Boberg U, Hahne B, Müller-Suur R, Norlen BJ, Selen G (1982) Interstitital pressure as a modulator of tubuloglomerular feedback control. Kidney Int 12:122–128

    Google Scholar 

  56. Persson AEG, Bianchi G, Boberg U (1984) Evidence of a defect tubuloglomerular feedback control in Milan hypertensive strain (MHS) rats. Acta Physiol Scand 122:217–219

    Google Scholar 

  57. Persson AEG, Bianchi G, Boberg U (1985) Tubuloglomerular feedback in hypertensive rats of the Milan strain. Acta Physiol Scand 123:139–146

    Google Scholar 

  58. Ploth DW, Rudulph J, Lagrange R, Navar LG (1979) Tubuloglomerular feedback and single nephron function after converting enzyme inhibition in the rat. J Clin Invest 64:1325–1335

    Google Scholar 

  59. Ploth DW, Roy RN (1982) Renin-angiotensin influences on tubuloglomerular feedback activity in the rat. Kidney Int 12:114–121

    Google Scholar 

  60. Redgrave J, Rabinowe S, Hollenberg NK, Williams GH (1985) Correction of abnormal renal blood flow response to angiotensin II by converting-enzyme inhibition in essential hypertensives. J Clin Invest 75:1–6

    Google Scholar 

  61. Sawyer WH, Blair-West JR, Simpson PA, Sawyer MK (1976) Renal responses of Australian lung fish to vasotoxin, angiotensin II and sodium chloride infusion. Am J Physiol 231:593–602

    Google Scholar 

  62. Schnermann J, Wright FS, Davis JM, Stackelberg W von, Grill G (1970) Regulation of superficial nephron filtration rate by tubuloglomerular feedback. Pflügers Arch 318:147–175

    Google Scholar 

  63. Schnermann J, Hermle M, Schmidmeier E, Dalheim H (1975) Impaired potency for feedback regulation of glomerular filtration rate in DOCA-escaped rats. Pflügers Arch 358:325–338

    Google Scholar 

  64. Schnermann J, Weber PC (1982) Reversal of indomethacin-induced inhibition of tubuloglomerular feedback by prostaglandin infusion. Prostaglandins 24:351–361

    Google Scholar 

  65. Schnermann J, Briggs JP, Schubert G, Marin-Grez M (1984) Opposing effects of captopril and aprotinin on tubuloglomerular feedback responses. Am J Physiol 247:F912-F918

    Google Scholar 

  66. Schnermann J, Briggs J (1985) Function of the juxtaglomerular apparatus: Local control of glomerular hemodynamics. In: Seldin DW, Giebisch G (Hrsg) The Kidney: Physiology and Pathophysiology, Raven Press, Chapter 30

  67. Shoback DM, Williams GH, Moore TJ, Dluhy RG, Podolsky S, Hollenberg NK (1983) Defect in the sodium-modulated tissue responsiveness to angiotensin II in essential hypertension. J Clin Invest 72:2115–2124

    Google Scholar 

  68. Schuster VL, Kokko JP, Jacobson HR (1984) Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest 73:507–515

    Google Scholar 

  69. Stowe NT, Schnermann J, Hermle M (1979) Feedback regulation of nephron filtration rate during pharmacologic interference with the renin-angiotensin and adrenergic systems in rats. Kidney Int 15:473–486

    Google Scholar 

  70. Stumpe KO, Overlack A, Kolloch R, Schreyer S (1982) Long-term efficacy of angiotensin-converting-enzyme inhibition with captopril in mild-to-moderate essential hypertension. Brit J Clin Pharmacol 14:121–126

    Google Scholar 

  71. Stumpe KO, Overlack A, Kolloch R (1984) ACE-Hemmung: ein pathophysiologisch begründetes Konzept zur Therapie der Hypertonie und der Herzinsuffizienz. Dtsch med Wschr 109:1295–1299

    Google Scholar 

  72. Tarazi RC, Bravo EL, Fouad FM, Omvik P, Cody Jr RJ (1980) Hemodynamic and volume changes associated with captopril. Hypertension 2:576–585

    Google Scholar 

  73. Taylor T, Moore TJ, Hollenberg NK, Williams GH (1984) Converting-enzyme inhibition corrects the altered adrenal response to angiotensin II in essential hypertension. Hypertension (Dallas) 6:92–99

    Google Scholar 

  74. Thurau K (1964) Renal hemodynamics. Am J Med 36:698–719

    Google Scholar 

  75. Vetter W, Wehling M, Foerster EC, Kuhlmann U, Boerlin H-J, Greminger P, Vetter H (1984) Long-term effect of captopril on kidney function in various forms of hypertension. Klin Wochenschr 62:731–737

    Google Scholar 

  76. Williams GH, Hollenberg NK (1977) Accentuated vascular and endocrine response to SQ 20 881 in hypertension. N Engl J Med 297:184–188

    Google Scholar 

  77. Williams GH, Tuck ML, Sullivan JM, Dluhy RG, Hollenberg NK (1982) Parallel adrenal and renal abnormalities in young patients with essential hypertension. Am J Med 72:907–914

    Google Scholar 

  78. Wright FS, Briggs JP (1979) Feedback control of glomerular blood flow, pressure and filtration rate. Physiol Rev 59:958–1000

    Google Scholar 

  79. Wright FS (1984) Intrarenal regulation of glomerular filtration rate. J Hypertension 2:105–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpe, K.O. Angiotensin-Conversions-Enzym-Hemmung: Direkte und indirekte renale Mechanismen. Klin Wochenschr 63, 897–906 (1985). https://doi.org/10.1007/BF01738143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738143

Key words

Schlüsselwörter

Navigation