Skip to main content

Advertisement

Log in

Retroviral transfer of HSV1-TK gene into human lung cancer cell line

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We used a recombinant retrovirus as one of the potential vectors for human gene therapy to transfer a drug sensitivity gene into human lung cancer cells. The gene encoding the thymidine kinase (TK) of herpes simplex virus type 1 (HSV1) was used as the drug sensitivity gene. The antiherpes drugs acyclovir (ACV) and ganciclovir (GCV) were chosen to test the HSV1-TK activity transferred into the human lung cancer cell lines. The rationale for this approach was that ACV and GCV are nucleoside analogs specifically converted by HSV1-TK to a toxic form capable of inhibiting DNA synthesis or disrupting cellular DNA replication. The results obtained from our experiments demonstrate that the retroviral vector-mediated HSV1-TK gene transfer leads to ACV- and GCV-dependent cytotoxicity in human lung cancer cell lines, including both small-cell carcinoma and nonsmall-cell carcinoma. Although the gene transfer of HSV1-TK gene into tumor cells would be one model for gene therapy to control lung cancer, further investigations are necessary for the proper choice of the therapeutic gene and vector targeting such as tumor cell specific delivery of the gene or tumor cell specific expression of the transduced gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACV :

Acyclovir

GCV :

Ganciclovir

HSV1 :

Herpes simplex virus type 1

LTR :

Long terminal repeat

TK :

Thymidine kinase

References

  1. Anderson WF (1992) Human gene therapy. Science 256:808–813

    Article  CAS  PubMed  Google Scholar 

  2. Miller AD (1992) Human gene therapy comes of age. Nature 357:455–460

    Article  CAS  PubMed  Google Scholar 

  3. Friedmann T (1989) Progress toward human gene therapy. Science 244:1275–1281

    Article  CAS  PubMed  Google Scholar 

  4. DeVita VT jr, Hellman S, Rosenberg SA (1993) Cancer: principles and practice of oncology, 4th edn. Lippincott, Philadelphia

    Google Scholar 

  5. Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. BioTechniques 7:980–990

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6:2895–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yee LJ-K, Wolff JA, Friedmann T (1989) Factors affecting long-term stability of Moloney leukemia virus-based vectors. Virology 171:331–341

    Article  PubMed  Google Scholar 

  8. McKnight SL, Gavis ER, Kingsbury R, et al (1981) Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25:385–398

    Article  CAS  PubMed  Google Scholar 

  9. Abe A, Takeo T, Emi N, et al (1993) Transduction of a drug-sensitive toxic gene into human leukemia cell lines with a novel retroviral vector. Proc Soc Exp Biol Med 203:354–359

    Article  CAS  PubMed  Google Scholar 

  10. Hasegawa Y, Emi N, Shimokata K, et al (1993) Gene transfer of herpes simplex virus type I thymidine kinase gene as a drug sensitivity gene into human lung cancer cell lines using retroviral vectors. Am J Respir Cell Mol Biol 8:655–661

    Article  CAS  PubMed  Google Scholar 

  11. Miller AD, Law MF, Verma IM (1985) Generation of helper-free amphotropic retroviruses that transduce a dominant-action, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol 5:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    Article  CAS  PubMed  Google Scholar 

  13. Quade K (1979) Transformation of mammalian cells by avian myelocytomatosis virus and avian erythroblastosis virus. Virology 98:461–465

    Article  CAS  PubMed  Google Scholar 

  14. Miyanohara A, Sharkey MF, Witztum JL, et al (1988) Efficient expression of retroviral vector-transduced human low density lipoprotein (LDL) receptor in LDL receptor-deficient rabbit fibroblasts in vitro. Proc Natl Acad Sci USA 85:6538–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emi N, Friedmann T, Yee J-K (1991) Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 65:1202–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Burns JC, Friedmann T, Driever W et al. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rousculp MD, Goldsmith KT, Garver RI jr (1992) Quantitative evaluation of retroviral gene transduction efficiency in human lung cancer cells. Hum Gene Ther 3:471–477

    Article  CAS  PubMed  Google Scholar 

  18. Kotin RM, Siniscalco M, Samulski RJ et al (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Samulski RJ, Zhu X, Xiao X et al (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84:156–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenberg SA, Aebersold P, Cornetta K, et al (1990) Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lumphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg SA (1991) Immunotherapy and gene therapy of cancer. Cancer Res [Suppl] 51:5074s-5079s

    CAS  Google Scholar 

  23. Huang H-JS, Yee J-K, Shew J-Y, et al (1988) Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563–1566

    Article  CAS  PubMed  Google Scholar 

  24. Baker SJ, Markowitz S, Fearon ER, et al (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915

    Article  CAS  PubMed  Google Scholar 

  25. Fearon ER, Pardoll DM, Itaya T, et al (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60:397–403

    Article  CAS  PubMed  Google Scholar 

  26. Ohe Y, Podack ER, Olsen KJ, et al (1993) Combination effect of vaccination with IL2 and IL4 cDNA transfected cells on the induction of a therapeutic immune response against Lewis lung carcinoma cells. Int J Cancer 53:432–437

    Article  CAS  PubMed  Google Scholar 

  27. Hunt JD, Pippin BA, Landreneau RJ, et al (1993) Transfer and expression of the human interleukin-4 gene in carcinoma and stromal cell lines derived from lung cancer patients. J Immunother 14:314–321

    Article  CAS  Google Scholar 

  28. Isobe K, Hasegawa Y, Iwamoto T, et al (1989) Induction of antitumor immunity in mice by allo-major histocompatibility complex class I gene transfectant with strong antigen expression. J Natl Cancer Inst 81:1823–1828

    Article  CAS  PubMed  Google Scholar 

  29. Cheng Y-C, Dutschman G, Fox JJ, et al (1981) Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrob Agents Chemother 20:420–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishiyama Y, Rapp F (1979) Anticellular effects of 9-(2-hydroxyethoxymethyl) guanine against herpes simplex virus-transformed cells. J Gen Virol 45:227–230

    Article  CAS  PubMed  Google Scholar 

  31. Furman PA, McGuirt PV, Keller PM, et al (1980) Inhibition by acyclovir of cell growth and DNA synthesis of cells biochemically transformed with herpes virus genetic information. Virology 102:420–430

    Article  CAS  PubMed  Google Scholar 

  32. Davidson RL, Kaufman ER, Crumpacker CS, et al (1981) Inhibition of herpes simplex virus transformed and nontransformed cells by acycloguanosine: mechanisms of uptake and toxicity. Virology 113:9–19

    Article  CAS  PubMed  Google Scholar 

  33. Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46:5276–5281

    CAS  PubMed  Google Scholar 

  34. Moolten FL, Wells JM (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 82:297–300

    Article  CAS  PubMed  Google Scholar 

  35. Ezzeddine ZD, Martuza RL, Platika D et al (1991) Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biologist 3:608–614

    CAS  PubMed  Google Scholar 

  36. Elion GB, Furman PA, Fyfe JA et al (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci USA 74:5716–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Field AK, Davies ME, DeWitt C et al (1983) 9-{[2-Hydroxy1-(hydroxymethyl)ethoxy]methyl} guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci USA 80:4139–4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashton WT, Karkas JD, Field AK et al (1982) Activation by thymidine kinase and potent antiherpetic activity of 2′-nor-2′deoxyguanosine (2′NDG). Biochem Biophys Res Commun 108:1716–1721

    Article  CAS  PubMed  Google Scholar 

  39. Matthews T, Boehme R (1988) Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 10 [Suppl 3]: 490–494

    Article  Google Scholar 

  40. Cheng Y-C, Huang E-S, Lin J-C et al (1983) Unique spectrum of activity of 9-[(1, 3-dihydroxy-2-propoxy)methyl]-guanine against herpes viruses in vitro and its mode of action against herpes simplex virus type 1. Proc Natl Acad Sci USA 80:2767–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Culver KW, Ram Z, Wallbridge S et al (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–1552

    Article  CAS  PubMed  Google Scholar 

  42. Curiel DT, Agarwal S, Unni Romer M et al (1992) Gene transfer to respiratory epithelial cells via the receptor-mediated endocytosis pathway. Am J Respir Cell Mol Biol 6:247–252

    Article  CAS  PubMed  Google Scholar 

  43. Mizuno M, Yoshida J, Sugita K et al (1990) Growth inhibition of glioma cells transfected with the human β-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res 50:7826–7829

    CAS  PubMed  Google Scholar 

  44. DiMaio JM, Clary BM, Via DF et al (1994) Directed enzyme pro-drug gene therapy for pancreatic cancer in vivo. Surgery 116:205–213

    CAS  PubMed  Google Scholar 

  45. Smith MJ, Rousculp MD, Goldsmith KT et al (1994) Surfactant protein A-directed toxin gene kills lung cancer cells in vitro. Hum Gene Ther 5:29–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, Y., Emi, N. & Shimokata, K. Retroviral transfer of HSV1-TK gene into human lung cancer cell line. J Mol Med 73, 107–112 (1995). https://doi.org/10.1007/BF00198237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198237

Keywords

Navigation