Skip to main content

Advertisement

Log in

Engineering of a functional interleukin-5 monomer: a paradigm for redesigning helical bundle cytokines with therapeutic potential in allergy and asthma

  • Original Articles
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Interleukin (IL) 5 specifically induces the differentiation of eosinophils which are central to the pathogenesis of allergies and asthma. Structurally, IL-5 is a unique member of the short-chain helical bundle subfamily of cytokines. In contrast to other subfamily members which fold unimolecularly into a single helical bundle, IL-5 forms a pair of helical bundles by the inter-digitation of two identical monomers covalently linked by a pair of intermolecular disulfide bonds. Although a native IL-5 monomer lacks bioactivity, we recently reported the engineering of an insertional mutant of IL-5 (designated mono5) which folds unimolecularly into a single helical bundle and has biological activity similar to that of native IL-5. Here we demonstrate no differences in signal transduction pathways utilized by mono5 and IL-5, as determined by western blot analysis of early tyrosine phosphorylation events, Jak2 activation, and mitogen-activated protein kinase activation. However, binding studies utilizing conformationally dependent neutralizing anti-IL-5 monoclonal antibodies localized a tertiary structural perturbation near the insert of mono5. This perturbation enabled localization of a limited region of the tertiary structure of IL-5 that engages the IL-5 receptor α-chain. Fluorescent labeling studies further revealed that the cysteines of mono5 contained free sulfhydryl groups, thereby demonstrating that the role of the disulfide bonds of IL-5 is the structural maintenance of other functional domains. The retention of conformational epitopes by mono5, but not IL-5, under reducing conditions and the equivalent thermostability of mono5 and IL-5 despite the absence of a disulfide bond in mono5 indicated that the conformation assumed by mono5 is very stable. In addition to providing the structural framework for designing novel IL-5 agonists and antagonists, the knowledge gained from the development of mono5 will enable other helical bundle proteins to be redesigned with therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELISA :

Enzyme-linked immunosorbent assay

IFN :

Interferon

IL :

Interleukin

mAb :

Monoclonal antibody

MAPK :

Mitogen-activated protein kinase

References

  1. Enokihara H, Furusawa S, Nakakubo H, Kajitani H, Nagashima S, Saito K, Shishido H, Hitoshi Y, Takatsu K, Noma T et al (1989) T cells from eosinophilic patients produce interleukin-5 with interleukin-2 stimulation. Blood 73:1809–1813

    CAS  PubMed  Google Scholar 

  2. Schrezenmeier H, Thome S, Tewald F, Fleischer B, Raghavachar A (1993) Interleukin-5 is the predominant eosinophilopoietin produced by cloned T lymphocytes in hypereosinophilic syndrome. Exp Hematol 21:358–365

    Google Scholar 

  3. Dubucquoi S, Desreaumaux P, Janin A, Klein O, Goldman M, Tavernier J, Capron A, Capron M (1994) Interleukin 5 synthesis by eosinophils: Association with granules and immunoglobulin-dependent secretion. J Exp Med 179:703–708

    Google Scholar 

  4. Kay A, Hamid Q, Robinson D, Bentley A, Tsicopoulos A, Ying S, Moqbel R, Corrigan C, Durham S (1993) Asthma, eosinophils, and interleukin-5. In: Gleich, Kay (ed) Eosinophils in allergy and inflammation. Dekker, New York

    Google Scholar 

  5. Bradding P, Okayama Y, Howarth P, Church M, Holgate S (1995) Heterogeneity of human mast cells based on cytokine content. J Immunol 155:297–307

    Google Scholar 

  6. Bradding P, Roberts J, Britten K, Montefort S, Djukanovic R, Mueller R, Huesser C, Howarth P, Holgate S (1994) Interleukin-4, -5, -6 and tumour necrosis factor-alpha in normal and asthmatic airway: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10:471–480

    Google Scholar 

  7. Dutton R, Wetzel G, Swain S (1984) Partial purification and characterization of a BCGFII from EL4 culture supernatants. J Immunol 132:2451–2456

    Google Scholar 

  8. Huston M, Moore J, Mettes H, Tavana G, Huston D (1996) Human B cells express IL-5 receptor mRNA and respond to IL-5 with enhanced IgM production after mitogenic stimulation with Moraxella catarrhalis. 156:1392–1401

  9. Takatsu K, Kikuchi Y, Takahashi T, Honjo T, Matsumoto M, Harada N, Yamaguchi N, Tominaga A (1987) Interleukin 5, a T-cell-derived B-cell differentiation factor also induces cytotoxic T lymphocytes. Proc Natl Acad Sci USA 84:4234–4238

    Google Scholar 

  10. Bischoff S, Brunner T, De-Weck A, Dahinden C (1990) Interleukin 5 modifies histamine release and leukotriene generation by human basophils in response to diverse agonists. J Exp Med 172:1577–1582

    Google Scholar 

  11. Hirai K, Yamaguchi M, Misaki Y, Takaishi T, Ohta K, Morita Y, Ito K, Miyamoto T (1990) Enhancement of human basophil histamine release by interleukin 5. J Exp Med 172:1525–1528

    Google Scholar 

  12. Campbell H, Tucker W, Hort Y, Martinson M, Mayo G, Clutterbuck E, Sanderson C, Young I (1987) Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin-5). Proc Natl Acad Sci USA 84:6629–6633

    Google Scholar 

  13. Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T (1991) Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis in mature human eosinophils. Blood 78:2542–2547

    Google Scholar 

  14. Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S, Torisu M, Mita S, Tominaga A, Takatsu K (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 167:1737–1742

    Google Scholar 

  15. Walsh G, Hartnell A, Wardlaw A, Kurihara K, Sanderson C, Kay A (1990) IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunol 71:258–265

    Google Scholar 

  16. Lopez A, Sanderson C, Gamble J, Campbell H, Young I, Vadas M (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167:219–224

    Google Scholar 

  17. Fujisawa T, Abu-Ghazaleh R, Kita H, Sanderson C, Gleich G (1990) Regulatory effect of cytokines on eosinophil degranulation. J Immunol 144:642–646

    Google Scholar 

  18. Coffman R, Seymour B, Hudak S, Jackson J, Rennick D (1989) Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science 245:308–310

    Google Scholar 

  19. Nakashima Y, Mita S, Takatsu K, Ogawa M (1993) Interleukin-5 induces tumor suppression by peritoneal exudate cells in mice. Cancer Immunol Immunother 37:227–232

    Google Scholar 

  20. Wu H, Hirai H, Inamori K, Kitamura K, Takaku F (1992) Anti-tumor effects of interleukin-4 and interleukin-5 against mouse B cell lymphoma and possible mechanisms of their action. Jpn J Cancer Res 83:200–210

    Google Scholar 

  21. Ying S, Durham S, Barkans J, Masuyama K, Jacobson M, Rak S, Lowhagen O, Moqbel R, Kay A, Hamid Q (1993) T cells are the principal source of interleukin-5 mRNA in allergen-induced rhinitis. Am J Respir Cell Mol Biol 9:356–360

    Google Scholar 

  22. Owen W, Rothenberg M, Petersen J, Weller P, Silberstein D, Sheffer A, Stevens R, Soberman R, Austen K (1989) Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med 170:343–348

    Google Scholar 

  23. Kay A, Ying S, Varney V, Gaga M, Durham S, Moqbel R, Wardlaw A, Hamid Q (1991) Messenger RNA expression of the cytokine gene cluster, interleukin 3 (IL-3), IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor, in allergen-induced late-phase cutaneous reactions in atopic subjects. J Exp Med 173:775–778

    Google Scholar 

  24. Bradding P, Feather I, Wilson S, Bardin P, Heusser C, Holgate S, Howarth P (1993) Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol 151:3853–3865

    Google Scholar 

  25. Bentley A, Meng Q, Robinson D, Hamid Q, Kay A, Durham S (1993) Increases in activated T lymphocytes, eosinophils, and cytokine mRNA expression for interleukin-5 and granulocyte/macrophage colony-stimulating factor in bronchial biopsies after allergen inhalation challenge in atopic asthmatics. Am J Respir Cell Mol Biol 8:35–42

    Google Scholar 

  26. Hamid Q, Azzawi M, Ying S, Moqbel R, Wardlaw A, Corrigan C, Bradley B, Durham S, Collins J, Jeffery P et al (1991) Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest 87:1541–1546

    Google Scholar 

  27. Till S, Baiqing L, Durham S, Humbert M, Assoufi B, Huston D, Dickason R, Jeannin P, Kay A, Corrigan C (1995) Secretion of eosinophil active cytokines by bronchoalveolar lavage CD4+ and CD8+ T cell lines in atopic asthmatics and atopic and non-atopic controls. Eur J Immunol 25:2727–2731

    Google Scholar 

  28. Chand N, Harrison J, Rooney S, Pillar J, Jakubicki R, Nolan K, Diamantis W, Sofia R (1992) Anti-IL-5 monoclonal antibody inhibits allergic late phase bronchial eosinophilia in guinea pigs: a therapeutic approach. Eur J Pharmacol 211:121–123

    Google Scholar 

  29. Mauser P, Pitman A, Witt A, Fernandez X, Zurcher J, Kung T, Jones H, Watnick A, Egan R, Kreutner W (1993) Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis 148:1623–1627

    Google Scholar 

  30. Mauser P, Pitman A, Fernandez X, Foran S, AdamsIII G, Kreutner W, Egan R, Chapman R (1995) Effects of an antibody to IL-5 in a monkey model of asthma. Am J Respir Crit Care Med 152:467–472

    Google Scholar 

  31. Nagai H, Yamaguchi S, Inagaki N, Tsuruoka N, Hitoshi Y, Takatsu K (1993) Effect of anti-IL-5 monoclonal antibody on allergic bronchial eosinophilia and airway hyperresponsiveness in mice. Life Sci 53:PL243-PL247

    Google Scholar 

  32. Kung T, Stelts D, Zurcher J, Adams G, Egan R, Kreutner W, Watnick A, Jones H, Chapman R (1995). Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am J Respir Cell Mol Biol 13:360–365

    Google Scholar 

  33. Van Oosterhout A, Van Ark I, Folkerts G, Van der Linde H, Savelkoul H, Verheyen K, Nijkamp F (1995) Antibody to interleukin-5 inhibits virus-induced airway hyperresponsiveness to histamine in guinea pigs. Am J Respir Crit Care Med 151:177–183

    Google Scholar 

  34. Foster P, Hogan S, Ramsay A, Matthaei K, Young I (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195–201

    Google Scholar 

  35. Milburn M, Hassell A, Lambert M, Jordan S, Proudfoot A, Graber P, Wells T (1993) A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of human interleukin-5. Nature 363:172–176

    Google Scholar 

  36. Rozwarski D, Gronenborn A, Clore G, Bazan J, Bohm A, Wlodawer A, Hatada M, Karplus P (1994) Structural comparison among the short-chain helical cytokines. Structure 2:159–173

    Google Scholar 

  37. Mita S, Tominaga A, Hitoshi Y, Sakamoto K, Honjo T, Akagi M, Kikuchi Y, Yamaguchi N, Takatsu K (1989) Characterization of high-affinity receptors for interleukin 5 on interleukin 5-dependent cell lines. Proc Natl Acad Sci USA 86:2311–2315

    Google Scholar 

  38. Tavernier J, Devos R, Cornelis S, Tuypens T, Van-der-Heyden J, Fiers W, Plaetinck G (1991) A human high affinity interleu-kin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66:1175–1184

    Google Scholar 

  39. Johanson K, Appelbaum E, Doyle M, Hensley P, Zhao B, Ab-del-Meguid S, Young P, Cook R, Carr S, Matico R, Cusimano D, Dul E, Angelichio M, Brooks I, Winborne E, McDonnell P, Morton T, Bennett D, Sokoloski T, McNulty D, Rosenberg M, Chaiken I (1995) Binding interactions of human interleukin 5 with its receptor alpha subunit. J Biol Chem 270:9459–9471

    Google Scholar 

  40. Devos R, Guisez Y, Cornelis S, Verhee A, Van-der-Heyden J, Manneberg M, Lahm H, Fiers W, Tavernier J, Plaetinck G (1993) Recombinant soluble human interleukin-5 (hIL-5) receptor molecules. Cross-linking and stoichiometry of binding to IL-5. J Biol Chem 268:6581–6587

    Google Scholar 

  41. Dickason R, Huston D (1996) Creation of a functional interleukin-5 monomer. Nature 379:652–655

    Google Scholar 

  42. Dickason R, Huston M, Huston D (1996) Delineation of IL-5 domains predicted to engage the IL-5 receptor complex. J Immunol 156:1030–1037

    Google Scholar 

  43. Cornelis S, Plaetinck G, Devos R, Van der Heyden J, Tavernier J, Sanderson C, Guisez Y, Fiers W (1995) Detailed analysis of the IL-5-IL-5R alpha interaction characterization of crucial residues on the ligand and the receptor. EMBO J 14:3395–3402

    Google Scholar 

  44. Graber P, Proudfoot A, Talabot R, Bernard A, McKinnon M, Banks M, Fattah D, Solari R, Peitsch M, Wells T (1995) Identification of key charged residues of human interleukin-5 in receptor binding and cellular activitation. J Biol Chem 270:15762–15769

    Google Scholar 

  45. Tavernier J, Tuypens T, Verhee A, Plaetinck G, Devos R, Van der Heyden J, Guisez Y, Oefner C (1995) Identication of receptor-binding domains on human interleukin 5 and design of an interleukin 5-derived receptor antagonist. Proc Natl Acad Sci USA 92:5194–5198

    Google Scholar 

  46. Morton T, Li J, Cook R, Chaiken I (1995) Mutagenesis in the C-terminal region of human interleukin-5 reveals a central patch for receptor alpha chain recognition. Proc Natl Acad Sci USA 92:10879–10883

    Google Scholar 

  47. Li J, Cook R, Dede K, Chaiken I (1996) Single chain human interleukin 5 and its asymmetric mutagenesis for mapping receptor binding sites. J Biol Chem 271:1817–1820

    Google Scholar 

  48. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki K, Miyagawa K, Piao Y, Miyazano K, Urabe A, Takaku F (1989) Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 140:323–334

    Google Scholar 

  49. Dickason R, Huston M, Huston D (1994) Enhanced detection of human IL-5 in biological fluids utilizing murine monoclonal antibodies which delineate distinct neutralizing epitopes. Cytokine 6:647–656

    Google Scholar 

  50. Murata Y, Yamaguchi N, Hitoshi Y, Tominaga A, Takatsu K (1990) Interleukin 5 and interleukin 3 induce serine and tyrosine phosphorylations of several cellular proteins in an interleukin 5-dependent cell line. Biochem Biophys Res Commun 173:1102–1108

    Google Scholar 

  51. Takaki S, Kanazawa H, Shiiba M, Takatsu K (1994) A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor alpha chain and its function in IL-5-mediated growth signal transduction. Mol Cell Biol 14:7404–7413

    Google Scholar 

  52. Sato S, Katagiri T, Takaki S, Kikuchi Y, Hitoshi Y, Yonehara S, Tsukada S, Kitamura D, Watanabe T, Witte O, Takatsu K (1994) IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and janus 2 kinases. J Exp Med 180:2101–2111

    Google Scholar 

  53. Sakamaki K, Miyajima I, Kitamura T, Miyajima A (1992) Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO I 11:3541–3549

    Google Scholar 

  54. Van der Brugger T, Caldenhover E, Kanters D, Coffer P, Raaijimakers J, Lammers J, Koenderman L (1995) IL-5 signaling in human eosinophils involves JAK2 tyrosine kinase and Statla. Blood 85:1442–1448

    Google Scholar 

  55. Pazdrak K, Stafford S, Alam R (1995) The activation of the Jak-STAT1 signaling pathway by IL-5 in eosinophils. J Immunol 155:397–402

    Google Scholar 

  56. Sato N, Sakamaki K, Terada N, Arai K, Miyajima A (1993) Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common β subunit responsible for different signaling. EMBO J 12:4181–4189

    Google Scholar 

  57. Bates M, Bertics P, Busse W (1996) IL-5 activates a 45-kilodalton mitogen-activated protein (MAP) kinase and Jak-2 tyrosine kinase in human eosinophils. J Immunol 156:711–718

    Google Scholar 

  58. McKenzie A, Ely B, Sanderson C (1991) Mutated interleukin-5 monomers are biologically inactive. Mol Immunol 28:155–158

    Google Scholar 

  59. Windsor W, Syto R, Tsarbopoulos A, Zhang R, Durkin J, Baldwin S, Paliwal S, Mui P, Pramanik B, Trotta P et al (1993) Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10. Biochem 32:8807–8815

    Google Scholar 

  60. Ealick S, Cook W, Vijay-Kumar S, Carson M, Nagabhushan T, Trotta P, Bugg C (1991) Three-dimensional structure of recombinant human interferon-gamma. Science 252:698–702

    Google Scholar 

  61. Mita S, Takaki S, Tominage A, Takatsu K (1993) Comparative analysis of kinetics of binding and internalization of IL-5 murine IL-5 receptor of high and low affinity. J Immunol 151:6924–6932

    Google Scholar 

  62. Zdanov A, Schalk-Hili C, Gustchina A, Tsang M, Weatherbee J, Wlodawer A (1995) Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 3:591–601

    CAS  PubMed  Google Scholar 

  63. Fountoulakis M, Zulauf M, Lustig A, Garotta G (1992) Stoichiometry of interaction between interferon gamma and its receptor. Eur J Biochem 208:781–787

    Google Scholar 

  64. Tan J, Indelicato S, Narula S, Zavodny P, Chou C (1993) Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem 268:21053–21059

    Google Scholar 

  65. Montaner L, Griffin P, Gordon S (1994) Interleukin-10 inhibits initial reverse transcription of human immunodeficiency virus type 1 and mediates a virostatic latent state in primary bloodderived human macrophages in vitro. J Gen Virol 75:3393–3400

    Google Scholar 

  66. Mosmann T (1994) Properties and functions of interleukin-10. Adv Immunol 56:1–27

    Google Scholar 

  67. Masood R, Lunardi-Iskandar Y, Moudgil T, Zhang Y, Law R, Huang C, Puri R, Levine A, Gill P (1994) IL-10 inhibits HIV-1 replication and is induced by Tat. Biochem Biophys Res Commun 202:374–383

    Google Scholar 

  68. Sprang S, Bazan J (1993) Cytokine structural taxonomy and mechanisms of receptor engagement. Curr Op Struct Biol 3:815–827

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickason, R.R., English, J.D. & Huston, D.P. Engineering of a functional interleukin-5 monomer: a paradigm for redesigning helical bundle cytokines with therapeutic potential in allergy and asthma. J Mol Med 74, 535–546 (1996). https://doi.org/10.1007/BF00204980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204980

Key words

Navigation