Skip to main content
Log in

Physical mapping of plastid DNA variation among eleven Nicotiana species

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Plastid DNA of seven American and four Australian species of the genus Nicotiana was examined by restriction endonuclease analysis using the enzymes Sal I, Bgl I, Pst I, Kpn I, Xho I, Pvu II and Eco RI. These endonucleases collectively distinguish more than 120 sites on N. tabacum plastid DNA. The DNAs of all ten species exhibited restriction patterns distinguishable from those of N. tabacum for at least one of the enzymes used. All distinctive sites were physically mapped taking advantage of the restriction cleavage site map available for plastid DNA from Nicotiana tabacum (Seyer et al. 1981). This map was extended for the restriction endonucleases Pst I and Kpn I. In spite of variation in detail, the overall fragment order was found to be the same for plastid DNA from the eleven Nicotiana species. Most of the DNA changes resulted from small insertions/deletions and, possibly, inversions. They are located within seven regions scattered along the plastid chromosome. The divergence pattern of the Nicotiana plastid chromosomes was strikingly similar to that found in the genus Oenothera subsection Euoenothera (Gordon et al. 1982). The possible role of replication as a factor in the evolution of divergence patterns is discussed. The restriction patterns of plastid DNA from species within a continent resembled each other with one exception in each instance. The American species N. repanda showed patterns similar to those of most Australian species, and those of the Australian species N. debneyi resembled those of most American species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ims:

isonuclear male sterile

ptDNA:

plastid chloroplast DNA

Rubisco:

ribulosebisphosphate carboxylase/oxygenase

kbp:

kilobase pairs

LSU:

large subunit of Rubisco

References

  • Adelberg EA, Bergquist P (1972) The stabilization of episomal integration by genetic inversion: a general hypothesis. Proc Natl Acad Sci USA 69:2061–2065

    Google Scholar 

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29:319–328

    Google Scholar 

  • Arrand JR, Myers PA, Roberts RJ (1978) A new restriction endonuclease from Streptomyces albus G. J Mol Biol 118:127–135

    Google Scholar 

  • Atchison BA, Whitfeld RP, Bottomley W (1976) Comparison of chloroplast DNAs by specific fragmentation with EcoRI endonuclease. Mol Gen Genet 148:263–269

    Google Scholar 

  • Bedbrook JR, Bogorad L (1976) Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc Natl Acad Sci USA 73:4309–4313

    Google Scholar 

  • Bedbrook JR, Kolodner R (1979) The structure of chloroplast DNA. Annu Rev Plant Physiol 30:593–620

    Google Scholar 

  • Bolen PL, Grant DM, Swinton D, Boynton JE, Gillham NW (1982) Extensive methylation of chloroplast DNA by a nuclear gene mutation does not affect chloroplast gene transmission in Chlamydomonas. Cell 28:335–343

    Google Scholar 

  • Bottomley W (1980) Fraction I protein. In: Reinert J (ed) Results and problems in cell differentiation, vol 10. Springer, Berlin Heidelberg New York, pp 179–199

    Google Scholar 

  • Bovenberg WA, Kool AJ, Nijkamp HJJ (1981) Isolation, characterization and restriction endonuclease mapping of the Petunia hybrida chloroplast DNA. Nucleic Acids Res 9:503–517

    Google Scholar 

  • Bowman CM, Bonnard G, Dyer TA (1983) Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor Appl Genet 65:247–262

    Google Scholar 

  • Burbidge NT (1960) The australian species of Nicotiana L. (Solanaceae). Aust J Bot 8:342–395

    Google Scholar 

  • Calos MP, Miller JH (1980) Transposable elements. Cell 20:579–595

    Google Scholar 

  • Chen K, Johal S, Wildman SG (1976) Role of chloroplast and nuclear DNA genes during evolution of fraction I protein. In: Bucher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/North Holland, Amsterdam New York Oxford, pp 3–11

    Google Scholar 

  • Chu NM, Oishi KK, Tewari KK (1981) Physical mapping of the pea chloroplast DNA and localization of the ribosomal RNA genes. Plasmid 6:279–292

    Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissmann SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668

    Google Scholar 

  • Fluhr R, Edelman M (1981a) Physical mapping of Nicotiana tabacum chloroplast DNA. Mol Gen Genet 181:484–490

    Google Scholar 

  • Fluhr R, Edelman M (1981b) Conservation of sequence arrangement among higher plant chloroplast DNAs: molecular cross hybridization among the Solanaceae and between Nicotiana and Spinacia. Nucleic Acids Res 9:6841–6853

    Google Scholar 

  • Frankel R, Scowcroft WR, Whitfeld PR (1979) Chloroplast DNA variation in isonuclear male-sterile lines of Nicotiana. Mol Gen Genet 169:129–135

    Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica (Waltham, Mass)

    Google Scholar 

  • Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera. Theor Appl Genet 61:373–384

    Google Scholar 

  • Grant DM, Gillham NW, Boynton JE (1980) Inheritance of chloroplast DNA in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 77:6067–6071

    Google Scholar 

  • Herrmann RJ, Possingham JV (1980) Plastid DNA — The plastome. In: Reinert J (ed) Results and problems in cell differentiation, vol 10. Springer, Berlin Heidelberg New York, pp 45–96

    Google Scholar 

  • Herrmann RG, Whitfeld PR (1982) Restriction mapping of chloroplast DNA using low-melting-temperature agarose. In: Edelman M, Hallick R, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier/North Holland, Amsterdam, pp 451–468

    Google Scholar 

  • Herrmann RG, Whitfeld PR, Bottomley W (1980a) Construction of Sal I/Pst I restriction map of spinach chloroplast DNA using low-gelling-temperature-agarose electrophoresis. Gene 8:179–181

    Google Scholar 

  • Herrmann RG, Seyer P, Schedel R, Gordon K, Bisanz C, Winter P, Hildebrandt JW, Wlaschek M, Alt J, Driesel AJ, Sears BB (1980b) The plastid chromosomes of several dicotyledons. In: Bucher T, Sebald W, Weiss H (eds) Biological chemistry of organelle formation. Springer, Berlin Heidelberg New York (Coll Ges Biol Chem 31, pp 97–112)

    Google Scholar 

  • Hermann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) Identification and characterization of genes for polypeptides of the thylakoid membrane. In: Ciferri O, Dure L (eds) Structure and function of plant genomes. Plenum, New York NY, pp 143–153

    Google Scholar 

  • Jurgenson JE, Bourque DP (1980) Mapping of rRNA genes in an inverted repeat in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res 8:3505–3516

    Google Scholar 

  • Koller B, Delius H (1980) Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178:261–269

    Google Scholar 

  • Koller B, Delius H (1982) Origin of replication in chloroplast DNA of Euglena gracilis located close to the region of variable size. EMBO J 1:995–998

    Google Scholar 

  • Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76:41–45

    Google Scholar 

  • Kung SD, Zhu YS, Shen GF (1982) Nicotiana chloroplast genome. 3. Chloroplast DNA evolution. Theor Appl Genet 61:73–79

    Google Scholar 

  • Morris J, Offermann K, Herrmann RG (1983) Nucleotide sequence of the gene coding for the 51 Kd chloroplast A binding protein associated with photosystem II reaction center in spinach, Oenothera hookeri and Argillicola. In: Abstr 6th Int Congr Photosynthesis, Brussels, vol 2, p 321

  • Myers AM, Grant DM, Rabert DK, Harris EH, Boynton JE, Gillham NW (1982) Mutants of Chlamydomonas reinhardtii with physical alterations in their chloroplast DNA. Plasmid 7:133–151

    Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid brassica species. Theor Appl Genet 65:181–189

    Google Scholar 

  • Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550

    Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010

    CAS  Google Scholar 

  • Poulsen C (1983) The barley chloroplast genome: physical structure and transcriptional activity in vivo. Carlsberg Res Commun 8:57–80

    Google Scholar 

  • Rhodes PR, Zhu YS, Kung SD (1981) Nicotiana chloroplast genome. 1. Chloroplast DNA diversity. Mol Gen Genet 182:106–111

    Google Scholar 

  • Salts Y, Beckmann JS (1981) Chloroplast DNA preparation from Petunia and Nicotiana. PMB Newslett 2:73–74

    Google Scholar 

  • Schiller B, Herrmann RG, Melchers G (1982) Restriction endonuclease analysis of plastid DNA from tomato, potato and some of their somatic hybrids. Mol Gen Genet 186:453–459

    Google Scholar 

  • Scowcroft WR (1979) Nucleotide polymorphism in chloroplast DNA of Nicotiana debneyi. Theor Appl Genet 55:133–137

    Google Scholar 

  • Sears BB (1980) Disappearance of the heteroplasmic state for chloroplast markers in zygospores of Chlamydomonas reinhardtii. Plasmid 3:18–34

    Google Scholar 

  • Seyer P, Kowallik KV, Herrmann RG (1981) A physical map of Nicotiana tabacum plastid DNA including the location of structural genes for ribosomal RNAs and the large subunit of ribulose bisphosphate carboxylase/oxygenase. Curr Genet 3:189–204

    Google Scholar 

  • Shen GF, Chen K, Wu M, Kung SD (1982) Nicotiana chloroplast genome. 4. N. acuminata has larger inverted repeats and genome size. Mol Gen Genet 187:12–18

    Google Scholar 

  • Shinozaki K, Sugiura M (1982) The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene 20:91–102

    Google Scholar 

  • Stubbe W (1959) Genetische Analyse des Zusammenwirkens von Genom und Plastom bei Oenothera. Z Vererbungl 90:288–298

    Google Scholar 

  • Vedel F, Quetier F, Bayen M (1976) Specific cleavage of chloroplast DNA from higher plants by EcoRI restriction nuclease. Nature 263:440–442

    Google Scholar 

  • Wettstein D von, Poulsen C, Holder AA (1978) Ribulose-1,5-Bisphosphate Carboxylase as a nuclear and chloroplast marker. Theor Appl Genet 53:193–197

    Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W (1982) Nucleotide sequence of the gene for the M r 32,000 thylakoid membrane protein of Spinacea oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of M r 38,950. Proc Natl Acad Sci USA 79:7699–7703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. von Wettstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salts, Y., Herrmann, R.G., Peleg, N. et al. Physical mapping of plastid DNA variation among eleven Nicotiana species. Theoret. Appl. Genetics 69, 1–14 (1984). https://doi.org/10.1007/BF00262529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262529

Key words

Navigation