Skip to main content
Log in

Monoparametric models of flow cytometric karyotypes with spreadsheet software

  • Originals
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Theoretical flow karyotypes from both plant and mammalian species have been simply modelled using computer spreadsheet software. The models are based upon published values of relative DNA content or relative lengths of each of the chromosomes. From such data, the histograms of chromosome distribution have been simulated for both linear and logarithmic modules of a flow cytometer, and as a function of the coefficient of variation. Simulated and experimental histograms are compard for Nicotiana plumbaginifolia. This readily accessible exercise facilitates the planning and execution of flow cytometric analysis and sorting of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Árnason Ú (1974) Comparative chromosome studies in Cetacea. Hereditas 77:1–36

    Google Scholar 

  • Bennett MD, Heslop-Harrison JS, Smith JB, Ward JP (1983) DNA density in mitotic and meiotic metaphase chromosomes of plants and animals. J Cell Sci 63:173–179

    Google Scholar 

  • Bosemark NO, Bormotov VE (1971) Chromosome morphology in a homozygous line of sugar beet. Hereditas 69:205–212

    Google Scholar 

  • Carrano AV, Lebo RV, Yu LC, Kan YW (1981) Regional gene mapping of human chromosomes purified by flow sorting. In: Neth R, Gallo RC, Graf T (eds) Modern trends in human leukemia IV. Springer, Berlin Heidelberg New York, pp156–159

    Google Scholar 

  • Conia J, Muller P (1988) Isolation, classification and flow cytometric sorting of plant chromosomes. In: Yen A (ed) Flow cytometry: Advanced experimental and clinical applications. CRC Press, Boca Raton/FL, USA (in press)

    Google Scholar 

  • Conia J, Bergounioux C, Perennes C, Muller P, Brown S, Gadal P (1987) Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry 8:500–508

    Google Scholar 

  • De Laat AMM, Blaas J (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467

    Google Scholar 

  • Fox KR, Howarth NR (1985) Investigations into the sequenceselective binding of mithramycin and related ligands to DNA. Nucleic Acids Res 13:8695–8714

    Google Scholar 

  • Gray JW, Langlois RG (1986) Chromosome classification and purification using flow cytometry and sorting. Annu Rev Biophys Chem 15:195–235

    Google Scholar 

  • Gray JW, Carrano AV, Steinmetz LL, Van Dilla MA, Moore II DH, Mayall BH, Mendelsohn ML (1975) Chromosome measurement and sorting by flow systems. Proc Natl Acad Sci USA 72:1231–1234

    Google Scholar 

  • Gray JW, Langlois RG, Carrano AV, Burkhart-Schulte K, Van Dilla MA (1979) High resolution chromosome analysis: One and two parameter flow cytometry. Chromosoma 73:9–27

    Google Scholar 

  • Gray JW, Dean PN, Fuscoe JC, Peters DC, Trask BJ, Van den Engh GJ, Van Dilla MA (1987) High-speed chromosome sorting. Science 238:323–329

    Google Scholar 

  • Grunwald D, Reuter W-O, Rosenfeld C, Frelat G (1983) Analyse de chromosomes humains par microcytophotomètre de flux. C R Acad Sci Ser III 297:299–304

    Google Scholar 

  • Grunwald D, Geffrotin C, Chardon P, Frelat G, Vaiman M (1986) Swine chromosomes: Flow sorting and spot blod hybridization. Cytometry 7:582–588

    Google Scholar 

  • Hansen KM (1975) The Gand Q-band karyotype of Böhm's or Grant's zebra (Equus burchelli böhmi). Hereditas 81:133–140

    Google Scholar 

  • Jackson RC (1957) New low chromosome number for plants. Science 126:1115–1116

    Google Scholar 

  • Kapuściński J, Szer W (1979) Interactions of 4′, 6-diamidine-2-phenylindole with synthetic polynucleotides. Nucleic Acids Res 6:3519–3534

    Google Scholar 

  • Langlois RG, Yu LC, Gray JW, Carrano AV (1982) Quantitative karyotyping of human chromosomes by dual beam flow cytometry. Proc Natl Acad Sci USA 79:7876–7880

    Google Scholar 

  • Lin CC, Biederman BM, Jamro HK, Hawthorne AB, Church RB (1980) Porcine (Susscrofa domestica) chromosome identification and suggested nomenclature. Can J Genet Cytol 22:103–116

    Google Scholar 

  • Maizonnier D (1976) Etude cytogenetique de variations chromosomiques naturelles ou induites chez Petunia hybrida Hort. Thèse Doct ès Sci Nat Université de Dijon, France, pp1–98

    Google Scholar 

  • Manolov G, Manolova Y, Levan A (1971) The fluorescence pattern of the human karyotype. Hereditas 69:273–286

    Google Scholar 

  • Mendelsohn ML, Mayall BH, Bogart E, Moore II DH, Perry BH (1973) DNA content and DNA-based centromeric index of the 24 human chromosomes. Science 179:1126–1129

    Google Scholar 

  • Mori M, Sasaki M (1973) Fluorescence banding patterns of the rat chromosomes. Chromosoma 40:173–182

    Google Scholar 

  • Mouras A, Wildenstein C, Salesses G (1986) Analysis of karyotype and C-banding pattern of Nicotiana plumbaginifolia using two techniques. Genetica 68:197–202

    Google Scholar 

  • Muleris M, Paravatou-Petsota M, Dutrillaux B (1984) Diagrammatic representation for chromosomal mutagenesis studies II. Radiation-induced rearrangements in Macaco fascicularis. Mutat Res 126:93–103

    Google Scholar 

  • Schnedl W (1971) The karyotype of the mouse. Chromosoma 35:111–116

    Google Scholar 

  • Sheridan WF (1982) Maps, Markers and Stocks. In: Sheridan WF (ed) Maize for biological research. III. Genetics and Cytogenetics. A special publication of the Plant Molecular Biology Association. University of North Dakota, University Press, Charlottesville, pp 37–52

    Google Scholar 

  • Sjödin J (1971) Induced translocation in Vicia faba L. Hereditas 68:1–34

    Google Scholar 

  • Southern EM (1982) Application of DNA analysis to mapping the human genome. Cytogenet Cell Genet 32:52–57

    Google Scholar 

  • Van den Engh G, Trask B, Cram S, Bartholdi M (1984) Preparation of chromosome suspensions for flow cytometry. Cytometry 5:108–117

    Google Scholar 

  • Weisblum B, Haenssler E (1974) Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma 46:255–260

    Google Scholar 

  • Young, BD, Ferguson-Smith MA, Sillar R, Boyd E (1981) Highresolution analysis of human peripheral lymphocyte chromosomes by flow cytometry. Proc Natl Acad Sci USA 78:7727–7731

    Google Scholar 

  • Yu L-C, Aten J, Gray J, Carrano AV (1981) Human chromosome isolation from short-term lymphocyte culture for flow cytometry. Nature 293:154–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Mechelke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conia, J., Muller, P., Brown, S. et al. Monoparametric models of flow cytometric karyotypes with spreadsheet software. Theoret. Appl. Genetics 77, 295–303 (1989). https://doi.org/10.1007/BF00266200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266200

Key words

Navigation