Skip to main content
Log in

Phylogenetic relationships of Thlaspi s.l. (subtribe Thlaspidinae, Lepidieae) and allied genera based on chloroplast DNA restriction-site variation

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Chloroplast DNA restriction-site variation was analyzed in 30 accessions representing 20 species from the major lineages in Thlaspi s.l. (previously described as genera by Meyer 1973, 1979) and allied genera from the subtribe Thlaspidinae (Peltaria, Teesdalia, Cochlearia, Ionopsidium, Aethionema). A total of 161 variable restriction sites were detected. Phylogenetic analyses indicated a division of Thlaspi s.l. into three groups consistent with Meyer's genera Thlaspi s. str., Microthlaspi and Noccaea/Raparia. The genus Thlaspi s.l. as currently described proved to be paraphyletic because one of its major lineages, i.e. Thlaspi s. str., appeared to be more closely related to other genera (Peltaria, Teesdalia) than to the remaining lineages of Thlaspi s.l., i.e. Noccaea/Raparia and Microthlaspi. Sequence divergence values (100 x p) between the Thlaspi s.l. lineages were similar to values between these groups and related genera (Teesdalia, Peltaria), respectively. Chloroplast DNA variation was also used to assess subtribal classification of the genera studied. The cpDNA data were inconsistent with the controversial taxonomic classifications based on morphology. The molecular data would suggest that (1) the subtribe Thlaspidinae, as traditionally described, is not monophyletic; (2) the Thlaspidinae should be reduced to a group consisting of Thlaspi s. str., Peltaria, Teesdalia, Microthlaspi, Noccaea/Raparia, and that Aethionema should be excluded from the Thlaspidinae; and (3) Cochlearia and Ionopsidium represent the subtribe Cochleariinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert VA, Mishler BD, Chase MW (1992) Character-state weighting for restriction-site data in phylogenetic reconstruction, with examples form chloroplast DNA. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 369–401

    Google Scholar 

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373

    Google Scholar 

  • Al-Shehbaz IA (1985) The genera of Thelypodieae (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 66:85–111

    Google Scholar 

  • Al-Shehbaz IA (1986) The genera of Lepidieae (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 67:265–311

    Google Scholar 

  • Avetisian VE (1983) The system of the family Brassicaceae. Bot Zhur 68:1297–1305

    Google Scholar 

  • Avetisian VE, Fursa NS (1990) The importance of low molecular compounds for the systematics of the family Brassicaceae. Bot Zhur 75:192–199

    Google Scholar 

  • Ball PW, Heywood VH, Akeroyd JR (1993) Cruciferae. In: Tutin TG, Surges NA, Chater OA, Edmonson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, 2nd edn, vol 1. Cambridge University Press, Cambridge, 313–417

    Google Scholar 

  • Bruneau A, Doyle JJ (1993) Cladistic analysis of cpDNA restrictionsite characters in Erythrina (Leguminosae: Phaseoleae). Syst Bot 18:229–247

    Google Scholar 

  • Chase MW, Hills HH (1991) Silica gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dvorak F (1971) On the evolutionary relationships in the family Brassicaceae. Feddes Repert 82:357–372

    Google Scholar 

  • Fahleson J, Eriksson I, Glimelius K (1993) Intertribal somatic hybrids between Brassica napus and Barbarea vulgaris. Plant Cell Rep 13:411–416

    Google Scholar 

  • Fahleson J, Eriksson I, Lundgren M, Stymne S, Glimelius K (1994) Intertribal somatic hybrids between Brassica napus and Thlaspi perfoliatum expressing T. perfoliatum — specific gene(s) for nervonic acid biosynthesis. Theor Appl Genet 87:795–804

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 93:783–791

    Google Scholar 

  • Greuter W, Burdet HM, Long G (eds) (1986) Med-checklist, vol 3, Dicotyledones, Cruciferae. Conservatoire et Jardin Botaniques de la Ville de Genève, OPTIMA, Geneva, pp 34–172

    Google Scholar 

  • Hauser LA, Crovello TJ (1982) Numerical analysis of generic relationships in the Thelypodieae (Brassicaceae). Syst Bot 7:249–268

    Google Scholar 

  • Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335

    Google Scholar 

  • Hedge IC (1976) A systematic and geographical survey of the Old World Cruciferae. In: Vaughan JG, MacLeod AJ, Jones MB (eds) The biology and chemistry of the Cruciferae. Academic Press, London, pp 1–45

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    Google Scholar 

  • Holsinger KE, Jansen RK (1993) Phylogenetic analysis of restrictionsite data. Methods Enzymol 224:439–455

    Google Scholar 

  • Janchen E (1942) Das System der Cruciferen. Österr Bot Zeitschr 91:1–21

    Google Scholar 

  • Jansen RK, Holsinger KE, Michaels HJ, Palmer JD (1990) Phylogenetic analysis of cpDNA restriction-site data at higher taxonomic levels: an example from the Asteraceae. Evolution 44:2089–2105

    Google Scholar 

  • Kumar PR, Tsunoda S (1980) Variation in oil content and fatty acid composition among seeds from the Cruciferae. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies. Japan Scientific Societies Press. Tokyo, pp 235–252

    Google Scholar 

  • Meyer FK (1973) Conspectus der “Thlaspi” Arten Europas, Afrikas und Vorderasiens. Feddes Repert 84:449–470

    Google Scholar 

  • Meyer FK (1979) Kritische Revision der “Thlaspi” Arten Europas, Afrikas und Vorderasiens. Feddes Repert 90:129–154

    Google Scholar 

  • Meyer FK (1991) Seed-coat anatomy as a character for a new classification of Thlaspi. Flora et Veg Mundi 9:9–15

    Google Scholar 

  • Mummenhoff K, Koch M (1994) Chloroplast DNA restriction-site variation and phylogenetic relationships in the genus Thlaspi sensu lato (Brassicaceae). Syst Bot 19:73–88

    Google Scholar 

  • Mummenhoff K, Zunk K (1991) Should Thlaspi (Brassicaceae) be split? Preliminary evidence from isoelectric-focusing analysis of Rubisco. Taxon 40:427–434

    Google Scholar 

  • Mummenhoff K, Kuhnt E, Koch M, Zunk K (1995) Systematic implications of chloroplast DNA variation in Lepidium (Brassicaceae), sections Cardamon, Lepiocardamon and Lepia. Plant Syst Evol 196:75–88

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA: 5268–5273

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81:1205–1224

    Google Scholar 

  • Price RA, Al-Shehbaz IA, Palmer JD (1994) Systematic relationships of Arabidopsis: a molecular and morphological perspective. In: Meyerowitz EM, Somerville C (eds) Arabidopsis. Cold Spring Harbor Press, New York, pp 6–19

    Google Scholar 

  • Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L., and other genera of Brassicaceae. Taxon 37:309–318

    Google Scholar 

  • Rodman JE (1991) A taxonomic analysis of glucosinolate-producing plants, part 2: cladistics. Syst Bot 16:619–629

    Google Scholar 

  • Rodman JE, Price RA, Karol K, Conti E, Sytsma KJ, Palmer JD (1993) Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann Missouri Bot Gard 80:686–699

    Google Scholar 

  • Schultze-Motel W (ed) (1986) Cruciferae. In: Illustrierte Flora von Mitteleuropa, 3rd edn., vol IV, 1. Parey, Berlin

  • Schulz OE (1936) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, 17b. Engelmann, Leipzig, pp 227–658

    Google Scholar 

  • Swofford DL (1991) PAUP. Phylogenetic analysis using parsimony, version 3.1 for Macintosh. Computer package. Illinois Nat Hist Survey, Champaign

    Google Scholar 

  • Sytsma, KJ (1990) DNA and morphology: Inference of plant phylogeny. Trends Ecol Evol 5:104–110

    Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae) — chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Google Scholar 

  • Warwick SI, Black LD, Aguinagalde I (1992) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae) — chloroplast DNA variation in the genus Diplotaxis. Theor Appl Genet 83:839–850

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zunk, K., Mummenhoff, K., Koch, M. et al. Phylogenetic relationships of Thlaspi s.l. (subtribe Thlaspidinae, Lepidieae) and allied genera based on chloroplast DNA restriction-site variation. Theoret. Appl. Genetics 92, 375–381 (1996). https://doi.org/10.1007/BF00223682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223682

Key words

Navigation