Skip to main content
Log in

Acute dialysis: PMN-elastase as a new parameter for controlling individual anticoagulation with low molecular weight heparin (Fragmin®)

  • Originals
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Despite the improvements in the development of dialyzer membranes with greater hemocompatibility, an activation of the coagulation system occurs when blood comes into contact with exogenous surfaces. The large number of heparin dosage regimens demonstrate the difficulty to adapt general therapeutic guidelines. Low molecular weight heparin (Fragmin®) was administered as a single bolus dose for anticoagulation during 58 acute dialyses. Anti-Xa-activity, the plasma levels of the lysosomal elastase of the polymorphnuclear granulocytes (“PMN-elastase”) and of the thrombin-antithrombin III-complex (TAT) were measured at hourly intervals. Therapeutic anti-Xa-levels did not show evidence of sufficient inhibition of thrombin formation. The PMN-elastase increased by 180 ng/ml 3 h after administration of the bolus dose, with no further increase occurring (plateau phase). This was considered to reflect adequate anticoagulative activity. Where anticoagulation was inadequate, the elastase values rose consistently. After 2 h the increase of the PMN-elastase showed that — and to what extent — coagulation had been activated. The determination of PMN-elastase, using the IMAC-principle, is a method which can be performed quickly with any conventional autoanalyzer. It makes it possible to monitor adequate anticoagulation, but PMN-elastase results must be proven during routine use before recommendation as a routine test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hörl WH, Steinhauer HB, Schollmeyer P (1985) Plasma levels of granulocyte elastase during hemodialysis: effect of different dialyzer membranes. Kidney Int 85:791–796

    Google Scholar 

  2. Hörl WH, Steinhauer HB, Riegel W, Schollmeyer P, Schäfer RM, Heidland A (1988) Effect of different dialyzer membranes on plasma levels of granulocyte elastase. Kidney Int 33:90–91

    Google Scholar 

  3. Heimark RL, Kurachi K, Davie EW (1980) Surface activation of blood coagulation, fibrinolysis and kinin formation. Nature 286:456–560

    Google Scholar 

  4. Chenoweth DE, Henderson LW (1987) Complement activation during hemodialysis: laboratory evaluation of hemodialyzers. Artif Org 11:155–162

    Google Scholar 

  5. Müller-Berghaus G, Hoege R, Heinrich D, Brand RR, Berger MS, Meissel R, Hehrlein FW (1984) Granulocyte elastase release and changes of coagulation parameters during and after extracorporal circulation. Thromb Haemost 54:200–201

    Google Scholar 

  6. Pelzer H, Fuhge P, Lange H, Heimburger N (1982) Interactions between dialysis membranes and the coagulation system during hemodialysis. Life support systems. Proc IX Ann meeting ESAO 1982, pp 16–19

    Google Scholar 

  7. Lane DA, Ireland H, Flynn A, Anastassiades E, Curtis JR (1986) Hemodialysis with LMW heparin: dosage requirements for the elimination of extracorporeal fibrin formation. Nephrol Dial Transplant I:179–187

    Google Scholar 

  8. Feinstein DI (1982) Diagnosis and management of disseminated intravascular coagulation: the role of heparin therapy. Blood 60:284–287

    Google Scholar 

  9. Hörl WH, Jochum M, Neumann S, Heidland A (1985) Freisetzung von Granulozyten-Elastase bei akutem Nierenversagen und während der Hämodialysebehandlung bei chrenisch niereninsuffizienten Patienten. In: Neue Wege in der Entzürdungsdiagnostik: PMN-Elastase. GIT, Darmstadt, pp 43–52

    Google Scholar 

  10. Hörl WH, Jochum M, Heidland A, Fritz H (1983) Release of granulocyte proteinase during hemodialysis. Am J Nephrol 3:213–217

    Google Scholar 

  11. Jochum M, Fritz H (1985) Granulozytän Elastase als Marker der unspezifischen Proteolyse entzündlicher Erkrankungen. In: Neue Wege in der Entzündungsdiagnostik: PMN Elastase, GIT, Darmstadt, pp 1–8

    Google Scholar 

  12. Lang H, Dreher M, Heubner A (1981) Diagnostische Validität der Plasma-Elastase als prädiktiver, biochemischer Marker für infektiöse bzw. entzündliche Komplikationen. Dtsch Ges Klin Chem e.V. — Mitteilungen 1/89:10–16

    Google Scholar 

  13. Schäfer RM, Herfs N, Ormanns W, Hoerl WH, Heidland A (1988) Change of elastase and cathepsin G content in polymorphnuclear leucocytes. Clin Nephrol 29:307–311

    Google Scholar 

  14. Haas S, Haas P, Blümel G (1986) Niedermolekulare Heparine. Eine Übersicht über Wirkprofil und bisherige klinische Anwendung. Hämostasiologie 6:180–182

    Google Scholar 

  15. Aiach M, Dreyfus G, Michaud A, Relland J, Murawski M, Leclerc M, Carpentier A (1984) Low molecular weight (LMW) heparin derivatives in experimental extra-corporal circulation (EC). Haemostasis 14:325–323

    Google Scholar 

  16. Henny CP, Ten Cate JW, van Bronswijk H, Ten Cate H, Surachno S, Wilmik JM, Ockelford PA (1983) Use of a new heparinoid as anticoagulant during acute hemodialysis of patients with bleeding complications. Lancet 28:890–893

    Google Scholar 

  17. Ljundberg B, Blombäck M, Johnsson H, Lins LE (1987) A single dose of a low molecular weight heparin fragment for anticoagulation during hemodialysis. Clin Nephrol 27:31–35

    Google Scholar 

  18. Schrader J, Valentin R, Tönnis HJ, Hildebrand U, Stibbe W, Armstrong VW, Kandt M, Köstering H, Wuellhorst E (1985) Low molecular weight heparin in hemodialysis and hemofiltration patients. Kidney Int 28:823–829

    Google Scholar 

  19. Seifert R, Borchert W, Letendre P, Knutsch P, Knutson R, Cipolle R (1986) Heparin kinetics during hemodialysis: Variation in sensitivity, distribution volume, and dosage. Ther Drug Monit 8:32–36

    Google Scholar 

  20. Pelzer H, Schwarz A, Heimburger N (1988) Determination of human thrombin-antithrombin III complex in plasma with a enzyme-linked immunosorbent assay. Thromb Haemost 59:101–106

    Google Scholar 

  21. Fish WW, Björk J (1979) Release of a two-chain form of antithrombin from antithrombin-thrombin complex. Eur J Biochem 101:31–38

    Google Scholar 

  22. Owen WG (1975) Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim Biophys Acta 405:380–387

    Google Scholar 

  23. Fritz H, Jochum M (1986) Lysosomal and systemspecific proteinases as inflammatory mediators. Fresenius Z Anal Chem 324:226

    Google Scholar 

  24. Egbring R, Seitz R, Wolf M, Lerch I, Havemann K (1987) Plasma derivate replacement in disseminated intravascular coagulation (DIC) induced by septic disorders with highly elevated elastase alpha-1-PI-complex. 2nd Int Congr Proteases. May 1987

  25. Stötzer KE, Amiral J, Spanuth E (1988) Neue Methoden zur Bestimmung von Fibrinspaltprodukten (D-Dimere). Lab Med 12:51–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swars, H., Hafner, G., Weilemann, L.S. et al. Acute dialysis: PMN-elastase as a new parameter for controlling individual anticoagulation with low molecular weight heparin (Fragmin®). Intensive Care Med 17, 52–56 (1991). https://doi.org/10.1007/BF01708410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01708410

Key words

Navigation