Skip to main content
Log in

Chemical composition of the lipopolysaccharides of Rhodobacter sulfidophilus, Rhodopseudomonas acidophila, and Rhodopseudomonas blastica

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The lipopolysaccharides of Rhodobacter sulfidophilus and the two budding species Rhodopseudomonas acidophila and Rhodopseudomonas blastica were isolated and chemically analyzed. The all have a lipid A backbone structure with glucosamine as the only amino sugar. The lipid A's of Rb. sulfidophilus and Rps. blastica contain phosphate, their fatty acids are characterized by ester-linked, unsubstituted 3-OH-10:0 and amide-linked 3-OH-14:0 (Rb. sulfidophilus) or 3-oxo-14:0 (Rps. blastica). Lipid A of Rps. acidophila is free of phosphate and contains the rare 3-OH-16:0 fatty acid in amide linkage.

The lipopolysaccharides of all three species contain 2-keto-3-deoxy-octonate (KDO) but are devoid of heptoses. Neutral sugars with the exception of glucose are lacking in the lipopolysaccharide of Rb. sulfidophilus. This shows a high galacturonic acid content. The lipopolysaccharides of Rps. acidophila and Rps. blastica have neutral sugar spectra indicative for typical O-chains (rhamnose, mannose, galactose, glucose in both species, and in Rps. blastica additionally 2-O-methyl-6-deoxy-hexose). The taxonomic value of the data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahamed NM, Mayer, H, Biebl, H, Weckesser J (1982) Lipopolysaccharide with 2,3-diamino-2,3-dideoxyglucose containing lipid A in Rhodopseudomonas sulfoviridis. FEMS Microbiol Lett 14:27–30

    Google Scholar 

  • Ambler, RP, Meyer TE, Kamen MD (1979) Anomalies in amino acid sequences of small cytochromes c and cytochromes c′ from two species of purple photosynthetic bacteria. Nature (Lond) 278:661–662

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Google Scholar 

  • Dickerson RE (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature (Lond) 283:210–212

    Google Scholar 

  • Drews G (1965) Die Isolierung schwefelfreier Purpurbakterien. Zbl Bak I Abt Orig Suppl Heft, 1:170–178

    Google Scholar 

  • Eckersly K, Dow CS (1980) Rhodopseudomonas blastica sp. nov.: a member of the Rhodospirillaceae. J Gen Microbiol 119:465–473

    Google Scholar 

  • Galambos JT (1967) The reaction of carbazole with carbohydrates. Anal Biochem 19:119–132

    Google Scholar 

  • Galanos C, Lüderitz O, Westphal O (1969) A new method for the extraction of R-lipopolysaccharide. Eur J Biochem 9:245–249

    Google Scholar 

  • Gibson J, Stackebrandt E, Zablen LB, Gupta R, Woese CR (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3:59–64

    Google Scholar 

  • Hansen TA, Veldkamp H (1973) Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch Microbiol 92:45–48

    Google Scholar 

  • Holst O, Borowiak D, Weckesser J, Mayer H (1983) Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem 137:325–332

    Google Scholar 

  • Imhoff JF (1982) Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch Microbiol 132:197–203

    Google Scholar 

  • Imhoff JF (1984) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89

    Google Scholar 

  • Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Systematic Bacteriol 34:340–343

    Google Scholar 

  • Kates M (1972) Techniques of lipodology: isolation analysis and identification of lipids. North-Holland, Amsterdam, p 515.

    Google Scholar 

  • Lowry OH, Roberts NR, Leiner KY, Wu ML, Farr AL (1954) The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem 207:1–17

    Google Scholar 

  • Mayer H, Bock E, Weckesser J (1983) 2,3-Diamino-2,3-dideoxyglucose containing lipid A in Nitrobacter X14. FEMS Microbiol Lett 17:93–96

    Google Scholar 

  • Mayer H, Weckesser J (1984) Unusual lipid A's: structures, taxonomical relevance and potential value for endotoxin research. In: Rietschel ET (ed) Handbook of endotoxin, vol 1: Chemistry of endotoxin. Elsevier BV, New York, pp 221–247

    Google Scholar 

  • Omar AS, Flammann H, Borowiak D, Weckesser J (1983) Lipopolysaccharide of two strains of the phototrophic bacterium Rhodopseudomonas capsulata. Arch Microbiol 134:212–216

    Google Scholar 

  • Partridge SM (1948) Filter-paper partition chromatography of sugars. 1. General description and application to the qualitative analysis of sugars in apples, egg white and foetal blood of sheep. Biochem J 42:238–250

    Google Scholar 

  • Pfennig N (1969) Rhodopseudomonas acidophila, sp.n.,a new species of the budding purple nonsulfur bacteria. J Bacteriol 99:597–602

    Google Scholar 

  • Pfennig N (1977) Phototrophic green and purple bacteria: a comparative systematic survey. Ann Rev Microbiol 31:275–290

    Google Scholar 

  • Pfennig N, Trüper HG (1983) Taxonomy of phototrophic green and purple bacteria: a review. Ann Microbiol (Inst Pasteur) 134B:9–20

    Google Scholar 

  • Rietschel ET, Gottert H, Lüderitz O, Westphal O (1972) Nature and linkages of the fatty acids present in the lipid A component of Salmonella lipopolysaccharide. Eur J Biochem 28:166–173

    Google Scholar 

  • Roppel J, Mayer H, Weckesser J (1975) Identification of 2,3-diamino-2,3-dideoxy-hexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodopseudomonas palustris. Carbohydr Res 40:31–40

    Google Scholar 

  • Salimath VP, Tharanathan RN, Weckesser J, Mayer H (1984) The structure of the polysaccharide moiety of Rhodopseudomonas sphaeroides ATCC 17023 lipopolysaccharide. Eur J Biochem 144:227–232

    Google Scholar 

  • Seewaldt W, Schleifer KH, Bock E, Stackebrandt E (1982) The close phylogenetical relationship of Nitrobacter and Rhodopseudomonas palustris. Arch Microbiol 131:287–290

    Google Scholar 

  • Snyder R, Stephens N (1959) A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta 34:244–245

    Google Scholar 

  • Strittmatter W, Weckesser J, Salimath PV, Galanos C (1983) Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155:153–158

    Google Scholar 

  • Weckesser J, Drews G, Fromme I (1972) Chemical analysis of and degradation studies on the cell wall lipopolysaccharide of Rhodopseudomonas capsulata. J Bacteriol 109:1106–1113

    Google Scholar 

  • Weckesser J, Drews G, Mayer H (1979) Lipopolysaccharides of photosynthetic bacteria. Ann Rev Microbiol 33:215–239

    Google Scholar 

  • Westphal O, Lüderitz O, Bister E (1952) Über die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 7b:148–155

    Google Scholar 

  • Wollenweber HW, Broady KW, Lüderitz O, Rietschel ET (1982) The chemical structure of lipid A. Demonstration of amidelinked 3-acyloxyacyl-residues in Salmonella minnesota Re lipopolysaccharide. Eur J Biochem 124:191–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegtmeyer, B., Weckesser, J., Mayer, H. et al. Chemical composition of the lipopolysaccharides of Rhodobacter sulfidophilus, Rhodopseudomonas acidophila, and Rhodopseudomonas blastica . Arch. Microbiol. 143, 32–36 (1985). https://doi.org/10.1007/BF00414764

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414764

Key words

Navigation