Skip to main content
Log in

Effects of exogenous factors on the cerebral glutathione in rodents

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Since glutathione is thought to be involved in cerebral functions, changes in the glutathione level imply modulations of the neurotransmission in addition to all the known effects of GSH. It was investigated whether alterations of the cerebral glutathione can be induced by consumption of GSH, by inhibition or stimulation of the synthesis of GSH, or by an inhibition of the re-reduction of the oxidized glutathione. Aminophenazone, propyphenazone, acetaminophen, phenytoin, morphine and nitrofurantoin, known to deplete hepatic GSH, had no effects on cerebral GSH. Diethyl maleate (0.6 ml/kg) decreased the cerebral content of GSH and GSSG in adult rats as well as in fetuses. The depletion of the cerebral GSH caused by diethyl maleate treatment for 4 days was followed by an increase up to 125% and a subsequent return to the normal level after 1 week. In rats starved up to 71 h deficiency of exogenous amino acids caused only a minimal or no decrease in cerebral GSH. The specific inhibitor of the gamma-glutamylcysteine synthetase BSO only depleted GSH in the brain of young mice following the repeated s. c. administration of a high dose (890 mg/kg). After cobaltous chloride (20 mg/kg; twice a day for 2 or 4 days) the GSH level in the brain was unchanged. In vivo inhibition of the cerebral glutathione reductase was caused by ammonium metavanadate (12.5 mg/kg; three times a week for 6 weeks). Nitrofurantoin (150 mg/kg) had no effect. After lomustine (10 mg/kg) a minimal increase in glutathione reductase was found, but simultaneously also an increase in GSSG and of the ratio GSSG/total glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aikawa K, Satoh T, Kobayashi K, Kitagawa H (1978) Glutathione depletion by aniline analogs in vitro associated with liver microsomal cytochrome P-450. Jpn J Pharmacol 28: 699–705

    CAS  PubMed  Google Scholar 

  • Ali-Osman F, Caughlan J, Gray GS (1989) Decreased DNA interstrang cross-linking and cytotoxicity induced in human brain tumor cells by 1,3-bis(2-chloroethyl)-1-nitrosourea after in vitro reaction with glutathione. Cancer Res 49: 5954–5958

    CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1970) Endwertmethoden. In: Bergmeyer HU (ed) Methoden der Enzymatischen Analysen. Akademie-Verlag Berlin, pp 101–106

    Google Scholar 

  • Berl S, Purpura DP, Girado M, Waelsch H (1959) Amino acid metabolism in epileptogenic and non-epileptogenic lesions of the neocortex (cat). J Neurochem 4: 311–317

    CAS  PubMed  Google Scholar 

  • Beutler E (1975) Disorders in glutathione metabolism. Life Sci 16: 1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Bien E, Witt M (1985) Influences of pyrazolones of hepatic glutathione in Rats. Arch Toxicol Suppl 8: 366–369

    CAS  PubMed  Google Scholar 

  • Bien E, Skorka G, Rex H, Kästner D (1990) Glutathione level in developing rat brain. Biogenic Amines 7: 275–281

    CAS  Google Scholar 

  • Bose R, Pinsky C (1985) Central pharmacological effects of glutathione in mice. Res Commun Psychiatr Behav 10: 303–312

    CAS  Google Scholar 

  • Calvin HJ, Grosshans K (1985) Growth retardation and cataracts in glutathione-deficient preweanling mice. Fed Proc 44: 599 A

    Google Scholar 

  • Cohen MB, Duvel DL (1988) Characterization of the inhibition of glutathione reductase and the recovery of enzyme activity in exponentially growing murine leukemia (L1210) cells treated with 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochem Pharmacol 37: 3317–3320

    CAS  PubMed  Google Scholar 

  • Cohen MD, Wei C-J (1988) Effects of ammonium metavanadate treatment upon macrophage glutathione redox cycle activity, Superoxide production, and intracellular glutathione status. J Leukoc Biol 44: 122–129

    CAS  PubMed  Google Scholar 

  • Cohen MD, Sen AC, Wei C-J (1987) Ammonium metavanadate complexation with glutathione disulfide: a contribution to the inhibition of glutathione reductase. Inorg Chim Acta 138: 91–93

    CAS  Google Scholar 

  • Comporti M (1987) Glutathione depleting agents and lipid peroxidation. Chem Phys Lipids 45: 143–169

    CAS  PubMed  Google Scholar 

  • Correira MA, Krowech G, Caldera-Munoz P, Yee SL, Straub K, Castagnoli JR N (1984) Morphine metabolism revisited. II. Isolation and chemical characterization of a glutathionylmorphine adduct from rat liver microsomal preparations. Chem Biol Interact 51: 13–24

    Google Scholar 

  • Costa LG, Murphy SD (1986) Effect of diethylmaleate and other glutathione depletors on protein synthesis. Biochem Pharmacol 19: 3383–3388

    Google Scholar 

  • Dubin M, Moreno SNJ, Martino EE, Docampo R, Stoppani AOM (1983) Increased biliary secretion and loss of hepatic glutathione in rat liver after nifurtimox treatment. Biochem Pharmacol 32: 483–487

    Article  CAS  PubMed  Google Scholar 

  • Eklöw-Lastbom L, Moldeus P, Orrenius S (1986) On the mechanisms of glutathione depletion in hepatocytes exposed to morphine and ethylmorphine. Toxicology 42: 13–21

    PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70–77

    Article  CAS  PubMed  Google Scholar 

  • Ferraro TN, Golden GT, DeMattei M, Hare TA, Fariello RG (1986) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on levels of glutathione in the extrapyramidal system of the mouse. Neuropharmacology 25: 1071–1074

    Article  CAS  PubMed  Google Scholar 

  • Haider SS, Kashyap SK (1989) Vanadium intoxication inhibits sulfhydryl groups and glutathione in the rat brain. Ind Health 27: 23–25

    CAS  PubMed  Google Scholar 

  • Hauschild F (1973) Pharmakologie und Grundlagen der Toxikologie. VEB Gustav Thieme Leipzig, p 435

    Google Scholar 

  • Ito S, Palumbo A, Proto G (1985) Tyrosinase-catalyzed conjugation of dopa with glutathione. Experientia 41: 960–961

    Article  CAS  PubMed  Google Scholar 

  • Katoh T, Higashi K, Inoue N (1989a) Subchronic effects of styrene and styrene oxide on lipid peroxidation and the metabolism of glutathione in rat liver and brain. J Toxicol Sci 14: 1–9

    CAS  PubMed  Google Scholar 

  • Katoh T, Higashi K, Inoue N, Tanaka J (1989b) Lipid peroxidation and the metabolism of glutathione in rat liver and brain following ethylene oxide inhalation. Toxicology 58: 1–9

    CAS  PubMed  Google Scholar 

  • Maines MD, Cruse I, Trakshel GM (1988) Molecular characterization of two forms of rat and rabbit heme oxygenase. Abstracts IUB Congress, Prague

  • Masukawa T, Sai M, Tochino Y (1989) Methods for depleting brain glutathione. Life Sci 44: 417–424

    CAS  PubMed  Google Scholar 

  • Meister A (1984) New aspects of glutathione biochemistry and transport selective alterations of glutathione metabolism. Fed Proc 43: 3031–3042

    CAS  PubMed  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711–760

    Article  CAS  PubMed  Google Scholar 

  • Nadiger HA (1987) Role of vitamin E and glutathione in the protection of rat brain against acute ethanol toxicity. Abstracts 2nd World Con gress of Neuroscience, Budapest

  • Noguchi K, Higuchi S, Matsui H (1989) Effects of glutathione isopropyl ester on glutathione concentration in ischemic rat brain. Res Commun Chem Pathol Pharmacol 64: 165–168

    CAS  PubMed  Google Scholar 

  • Ogita K, Yoneda Y (1987) Possible presence of /3H/glutathione (GSH) binding sites in synaptic membranes from rat brain. Neurosci Res 4: 486–496

    Article  CAS  PubMed  Google Scholar 

  • Ogita K, Kitago T, Nakamuta H, Fukuda Y, Koida M, Ogawa Y. Yoneda Y (1986) Glutathione-induced inhibition of Na+-independent and -dependent bindings ofl-/3H/glutamate in rat brain. Life Sci 39: 2411–2418

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Karkowsky A (1976) Glutathione metabolism and some possible functions of glutathione in the nervous system. Int Rev Neurobiol 19: 75–121

    CAS  PubMed  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson's disease: a disorder due to nigral glutathione defiency? Neurosci Lett 33: 305–310

    CAS  PubMed  Google Scholar 

  • Perry TL, Yong VW, Jones K, Wright JM (1986) Manipulation of glutathione content fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Neurosci Lett 70: 261–265

    Article  CAS  PubMed  Google Scholar 

  • Pessayre D, Wandscheer J-C, Cobert B, Level R, Degott C, Batt AM. Martin N, Benhamou JP (1980) Additive effects of inducers and fasting on acetaminophen hepatotoxicity. Biochem Pharmacol 29: 2219–2223

    CAS  PubMed  Google Scholar 

  • Pileblad E, Magnusson T (1988) Marked reduction of rat brain glutathione following intracerebroventricular administration of the glutathione synthesis inhibitorl-buthionine sulfoximine. Neurosci Lett 95: 302–306

    Article  CAS  PubMed  Google Scholar 

  • Pileblad E, Magnusson T, Fornstedt B (1989) Reduction of brain glutathione byl-buthionine sulfoximine potentiates the dopamine-depleting action of 6-hydroxydopamine in rat striatum. J Neurochem 52: 978–980

    CAS  PubMed  Google Scholar 

  • Powell SR, Puglia CD (1990) The effect of 1,3-bis(2-chloroethyl)-1-nitrosourea on rat brain glutathione status under conditions of normoxia and hyperoxia. Res Commun Chem Pathol Pharmacol 67: 361–374

    CAS  PubMed  Google Scholar 

  • Raps SR, Lai JCK, Hertz L, Cooper AJL (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultered neurons. Brain Res 493: 389–401

    Article  Google Scholar 

  • Rehncrona S, Folbergrova J, Smith DS, Siesjö BK (1980) Influence of complete and pronounced cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J Neurochem 34: 477–453

    CAS  PubMed  Google Scholar 

  • Richterich R (1965) Klinische Chemie. Theorie and Praxis. S Karger Basel (Schweiz) New York, pp 306–307

    Google Scholar 

  • Rossi L, Silva JM, McGirr LG, O'Brien PJ (1988) Nitrofurantoin-mediated oxidative stress cytotoxicity in isolated rat hepatocytes. Biochem Pharmacol 37: 3109–3117

    Article  CAS  PubMed  Google Scholar 

  • Roy D, Snodgrass WR (1988) Phenytoin metabolic activation: role of cytochrome P-450, glutathione, age, and sex in rats and mice. Res Commun Chem Pathol Pharmacol 59: 173–190

    CAS  PubMed  Google Scholar 

  • Sasame HA, Boyd MR (1978) Paradoxical effects of cobaltous chloride and salts of other divalent metals on tissue levels of reduced glutathione and microsomal mixed-function oxidase components. J Pharmacol Exp Ther 205: 718–724

    CAS  PubMed  Google Scholar 

  • Satoh T, Fukumori R, Kitagawa H (1976) Changes in tissue concentrations of sulfhydryl groups in relation to the metabolism of biogenic amines in vitro. Life Sci 19: 1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Sedlack J, Lindsay RH (1968) Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25: 192–205

    Google Scholar 

  • Seidegard J, Tuvesson H, Gunnarsson PO (1990) Denitrosation of a novel nitrosurea, tauromustine by glutathione transferase. Abstracts 12th European Workshop on Drug Metabolism, Basel

  • Siegers C-P, Schenke M, Younes M (1987) Influence of cadmium chloride, mercuric chloride, and sodium vanadate on the glutathione-conjugating enzyme system in liver, kidney, and brain of mice. J Toxicol Environ Health 22: 141–148

    CAS  PubMed  Google Scholar 

  • Slivka A, Mytilineou C, Cohen G (1987) Histochemical evaluation of glutathione in brain. Brain Res 409: 275–284

    Article  CAS  PubMed  Google Scholar 

  • Slivka A, Spina MB, Calvin HJ, Cohen G (1988) Depletion of brain glutathione in preweanling mice byl-buthionine sulfoximine. J Neurochem 590: 1391–1393

    Google Scholar 

  • Smith MT, Evans CG, Doane-Setzer P, Castro VM, Tahir MK, Mannervik B (1989) Denitrosation of 1,3-bis(2-chloroethyl)-1-nitrosourea by class mu glutathione transferases and its role in cellular resistance in rat brain tumor cells. Cancer Res 49: 2621–2625

    CAS  PubMed  Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: Implications for Parkinson disease. Proc Natl Acad Sci USA 86: 1398–1400

    CAS  PubMed  Google Scholar 

  • Srivastava RS, Murthy RC, Chandra SV (1989) Effect of manganese on some bioantioxidants in various organs of protein-deficient rats. Biochem Int 18: 903–912

    CAS  PubMed  Google Scholar 

  • Taniguchi M, Inoue M (1986) Ontogenic changes in metabolism and transport of glutathione in the rat. J Biochem 100: 1457–1463

    CAS  PubMed  Google Scholar 

  • Tribble DL, Jones DP (1990) Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Biochem Pharmacol 39: 729–736

    Article  CAS  PubMed  Google Scholar 

  • Uysal M, Kutalp G, Ozdemirler G, Aykac G (1989) Ethanol-induced changes in lipid peroxidation and glutathione content in rat brain. Drug Alcohol Depend 23: 227–230

    CAS  PubMed  Google Scholar 

  • Varma RR, Khutela KP, Dandiya PC (1986) The effect of some psychopharmacological agents on heat stress-induced changes in the glutathione levels of brain and blood in rats. Psychopharmacology 12: 170–175

    Google Scholar 

  • Warzock R, Rudel J, Wattig B (1986) The role of glutathione in peripheral nerves and its significance in peripheral neuropathies. Abstracts X. International Congress of Neuropathology, Stockholm

  • Wendel A, Feuerstein S (1981) Drug-induced lipid peroxidation in mice. I. Modulation by monooxygenase activity, glutathione and selenium status. Biochem Pharmacol 30: 2513–2520

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hempelmann E, Schirmer RH (1988) Glutathione reductase inhibitors as potential antimalarial drugs. Biochem Pharmacol 37: 855–860

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bien, E., Vick, K. & Skorka, G. Effects of exogenous factors on the cerebral glutathione in rodents. Arch Toxicol 66, 279–285 (1992). https://doi.org/10.1007/BF02307174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307174

Key words

Navigation