Skip to main content
Log in

HLö 7 dimethanesulfonate, a potent bispyridinium-dioxime against anticholinesterases

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

HLö 7 dimethanesulfonate (1-[[[4-(aminocarbonyl)pyridinio] methoxy] methyl] -2,4-bis [(hydroxyimino) methyl]pyridinium dimethanesulfonate) is a broad-spectrum reactivator against highly toxic organophosphorus compounds. The compound was synthesized by a new route with the carcinogenic bis(chloromethyl)ether being substituted by the non-mutagenic bis(methylsulfonoxymethyl)ether. The very soluble dimethanesulfonate of obidoxime was also prepared by this way. HLö 7 dimethanesulfonate is the first water-soluble salt of HLö 7 that should be suitable for the wet/dry autoinjector technology, because aqueous solutions of HLö 7 are not very stable (calculated shelf-life 0.2 years when stored at 8°C, 1 M solution, pH 2.5). The crystalline preparation contains 96% of thesyn/syn-isomer, less than 2% of thesyn/anti-isomer and some minor identified by-products. HLö 7 was very efficient in reactivating acetylcholinesterase (AChE) blocked by organophosphates as long as ageing did not prevent dephosphylation. HLö 7 was superior to HI 6 (1-[[[4-(aminocarbonyl)pyridinio]methoxy]methyl]-2-[(hydroxyimino)methyl]pyridinium dichloride) in reactivating soman and sarin-inhibited AChE from erythrocytes, and literature data indicate that HLö 7 exceeds HI 6 by far in reactivating tabun-inhibited AChE. In atropine-protected, soman-poisoned mice HLö 7 was three times more potent than HI 6 (protective ratio 5 versus 2.5), and in sarin-poisoned mice HLö 7 was 10 times more potent than HI 6 (protective ratio 8 for both oximes). In atropine-protected guinea-pigs HLö 7 was less effective than HI 6 (protective ratio: 2.3 versus 5.2 for soman; 5.2 versus 6.8 for sarin; 4.3 versus 3.8 for tabun). The mean survival time of anaesthetized guinea-pigs exposed to 5 LD50 soman (6.3 min) was increased by atropine (27 min) and atropine + HLö 7 (57 min). HLö 7 alone did not prolong the survival. The most impressive effect of HLö 7 was on respiration: 3 min after i.v. injection of HLö 7 and atropine, the depressed respiration increased rapidly to 60% of control and remained at that level during the observation period (60 min). With atropine alone, respiration recovered only slowly. Behavioural and physiologic parameters were determined in atropine-protected mice exposed to a sublethal soman dose. The running performance was significantly improved by HLö 7. Even central symptoms, e.g. hypothermia and convulsions, were decreased markedly by HLö 7 (evaluation 60 min after poisoning). The pharmacokinetic data for HLö 7 in male beagle dogs are similar to those of HI 6. After i.v. injection: t1/2α = 5 min; t1/2ß = 46 min; VD = 0.24 1/kg; Clp1 = 3.7 ml x min−1 x kg−1; Clren= 3.2 ml x min−1 x kg−1; renal excretion of unchanged HLö 7 = 86%. After i. m. injection: t1/2abs = 14 min; t1/2ß = 48 min; Vd = 0.27 1/kg; Clp1= 3.9 ml x min−1 x kg−1; Clren= 2.7 ml x min−1 x kg−1; renal excretion of unchanged HLö 7 = 76%; bioavailability >95%. Plasma protein binding was <5%; HLö 7 did not permeate into red cells. A dose of 20 μmol/kg was well tolerated both after i.v. and i.m. administration. In anaesthetized dogs (chloralose) HLö 7 i.v. (20 (imol/kg) showed marginal hypotensive effects, whereas 50 μmol/kg resulted in decreased mean blood pressure (−15%) and blood flow (−30%) without reflex tachycardia. One out of four dogs developed a circulatory shock syndrome with anuria. Respiration varied only transiently. Blood gases and pH were not influenced. Similar cardiovascular effects were observed in anaesthetized (urethane) guinea-pigs. In isolated guinea-pig hearts (Langendorff) sinus and ventricular heart rate were not influenced by HLö 7 <500 μM. HLö 7 antagonized both carbachol and nicotine effects. Red cell AChE was inhibited by HLö 7 by up to 50%; C50 about 100 μM. Previously, HLö 7 was shown to block ganglionic transmission (IC50= 500 μM), probably due to ion-channel blockade. These data indicate that HLö 7 combines ganglion blocking, anticholinergic and indirect cholinergic properties like other bispyridinium compounds. The results suggest that HLö 7 may be tolerated by man at a dose of 10 μmol/kg. Vital functions are not expected to be impaired. At such a dose (250–500 mg), which can be injected by an autoinjector, HLö 7 is expected to be superior to HI 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109: 579–585

    Google Scholar 

  • Alberts P (1990) A new H-oxime restores rat diaphragm contractility after esterase inhibition in vitro. Eur J Pharmacol 184: 191–194

    Article  PubMed  Google Scholar 

  • Alkondon M, Rao KS, Albuquerque EX (1988) Acetylcholinesterase reactivators modify the functional properties of the nicotinic acetylcholine receptor ion channel. J Pharmacol Exp Ther 245: 543–556

    PubMed  Google Scholar 

  • Benschop HP, Keijer JH (1966) On the mechanism of ageing of phosphonylated cholinesterases. Biochim Biophys Acta 128: 586–588

    Google Scholar 

  • Bisa K, Fischer G, Müller O, Oldiges H, Zoche E (1964) Die Antidotwirkung von Bis-[4-hydroxyiminomethyl-pyridinium-(1)-methyl]-äther-dichlorid bei mit Alkylphosphat vergifteten Ratten. Arzneimittelforschung 14: 85–88

    PubMed  Google Scholar 

  • Boskovic B, Kovacevic V, Jovanovic D (1984) PAM-2 Cl, HI 6 and HGG 12 in soman and tabun poisoning. Fundam Appl Toxicol 4: S106-S115

    Article  PubMed  Google Scholar 

  • Burness DM, Wright CJ, Perkins WC (1977) Bis(methylsulfonoxymethyl)-ether. J Org Chem 42: 2910–2913

    Article  Google Scholar 

  • Cetkovic S, Cvetkovic M, Jandric D, Cosic M, Boskovic B (1984) Effect of 2-PAM Cl, HI 6, and HGG 12 in poisoning by tabun and its thiocholine-like analog in the rat. Fundam Appl Toxicol 4: S116-S123

    Article  PubMed  Google Scholar 

  • Clement JG (1981) Toxicology and pharmacology ofbis-pyridinium oximes. Insight into the mechanism of action vs soman poisoning in vivo. Fundam Appl Toxicol 1: 193–202

    PubMed  Google Scholar 

  • Clement JG (1982) HI 6: Reactivation of central and peripheral acetylcholinesterase following inhibition by soman, sarin and tabun in vivo in the rat. Biochem Pharmacol 31: 1283–1287

    Article  PubMed  Google Scholar 

  • Clement JG (1983) Efficacy ofmono-, andbis-pyridinium oximes versus soman and tabun poisoning in mice. Fundam Appl Toxicol 3: 533–535

    PubMed  Google Scholar 

  • Clement JG (1984) Role of aliesterase in organophosphate poisoning. Fundam Appl Toxicol 4: S96-S105

    Article  PubMed  Google Scholar 

  • Clement JG (1991 a) Variability of sarin-induced hypothermia in mice: investigation into incidence and mechanism. Biochem Pharmacol 42: 1316–1318

    Article  PubMed  Google Scholar 

  • Clement J (1991 b) Central actions of acetylcholinesterase oxime reactivators. Fundam Appl Toxicol (submitted)

  • Clement JG, Lockwood PA (1982) HI 6, an oxime which is an effective antidote of soman poisoning: a structure-activity study. Toxicol Appl Pharmacol 64: 140–146

    Article  PubMed  Google Scholar 

  • Clement JG, Hansen AS, Boulet CA (1992) Efficacy of HLö 7 and pyrimidoxime as antidotes of nerve agent poisoning in mice. Arch Toxicol 66: 216–219

    PubMed  Google Scholar 

  • DFG Deutsche Forschungsgemeinschaft (1987) Maximum concentrations at the workplace and biological tolerance values for working material. VCH Verlagsgesellschaft mbH, Weinheim, p 57

    Google Scholar 

  • van Dongen CJ, Elskamp RM, de Jong LPA (1987) Influence of atropine upon reactivation and ageing of rat and human erythrocyte acetylcholinesterase inhibited by soman. Biochem Pharmacol 36: 1167–1169

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88–95

    Article  PubMed  Google Scholar 

  • Endres W, Spuhler A, ten Bruggencate G (1989) Acetylcholinesterase reactivators antagonize epileptiform bursting induced by paraoxon in guinea-pig hippocampal slices. J Pharmacol Exp Ther 251: 1181–1186

    PubMed  Google Scholar 

  • Engelhard H, Erdmann WD (1963) Ein neuer Reaktivator für durch Alkylphosphat gehemmte Acetylcholinesterase Klin Wochenschr 41: 225–227

    Article  Google Scholar 

  • Engelhard N, Erdmann WD (1964) Beziehungen zwischen chemischer Struktur und Cholinesterase reaktivierender Wirksamkeit bei einer Reihe neuer bis-quartärer Pyridin-4-aldoxime. Arzneimittelforschung 14: 870–875

    PubMed  Google Scholar 

  • Erdmann WD, Engelhard H (1964) Pharmakologisch-toxikologische Untersuchungen mit dem Dichlorid des Bis-[4-hydroxyiminomethyl-pyridinium-(1)-methyl]-äthers, einem neuen Esterase-Reaktivator. Arzneimittelforschung 14: 5–11

    PubMed  Google Scholar 

  • Eyer P, Lierheimer E, Schneller M (1984) Reactions of nitrosochloramphenicol in blood. Biochem Pharmacol 33: 2299–2308

    Article  PubMed  Google Scholar 

  • Eyer P, Hell W, Kawan A, Klehr H (1986) Studies on the decomposition of the oxime HI 6 in aqueous solution. Arch Toxicol 59: 266–271

    Article  PubMed  Google Scholar 

  • Eyer P, Hagedorn I, Ladstetter B (1988) Study on the stability of the oxime HI 6 in aqueous solution. Arch Toxicol 62: 224–226

    Article  PubMed  Google Scholar 

  • Eyer P, Ladstetter B, Schäfer W, Sonnenbichler J (1989) Studies on the stability and decomposition of the Hagedorn-oxime HLö 7 in aqueous solution. Arch Toxicol 63: 59–67

    Article  PubMed  Google Scholar 

  • Fonnum F, Sterri SH (1981) Factors modifying the toxicity of organophosphorus compounds including soman and sarin. Fundam Appl Toxicol 1: 143–147

    PubMed  Google Scholar 

  • Fonnum F, Sterri SH, Aas P, Johnsen H (1985) Carboxylesterases, importance for detoxification of organophosphorus anticholinesterases and trichothecenes. Fundam Appl Toxicol 5: S29-S38

    Article  PubMed  Google Scholar 

  • Gaustad R, Johnsen H, Fonnum F (1991) Carboxylesterases in guineapig. A comparison of the different isoenzymes with regard to inhibition by organophosphorus compounds in vivo and in vitro. Biochem Pharmacol 42: 1335–1343

    Article  PubMed  Google Scholar 

  • Glick D (1937) Properties of choline esterase in human serum. Biochem J 31: 521–525

    Google Scholar 

  • Gramstad T, Haszeldine RN (1956) Perfluoroalkyl derivatives of sulphur. Part IV. Perfluoroalkanesulphonic acids. J Chem Soc 173–180

  • Hackley BE, Steinberg GM, Lamb JC (1959) Formation of potent inhibitors of AChE by reaction of pyridinaldoximes with isopropyl methylphosphonofluoridate (GB). Arch Biochem Biophys 80: 211–214

    Article  Google Scholar 

  • Hagedorn I, Gündel WH, Schoene K (1969) Reaktivierung phosphorylierter Acetylcholinesterase mit Oximen: Beitrag zum Studium des Reaktionsablaufes. Arzneimittelforschung 19: 603–606

    PubMed  Google Scholar 

  • Hagedorn I, Stark I, Lorenz P (1972) Reaktivierung phosphorylierter Acetylcholinesterase — Abhängigkeit von der Aktivator-Acidität. Angew Chem 84: 354–356

    Google Scholar 

  • Hagedorn I, Stark I, Schoene K, Schenkel H (1978) Reaktivierung phosphorylierter Acetylcholinesterase. Isomere bisquartäre Salze von Pyridinaldoximen. Arzneimittelforschung 28: 2055–2057

    PubMed  Google Scholar 

  • Hamilton MG, Lundy PM (1989) HI 6 therapy of soman and tabun poisoning in primates and rodents. Arch Toxicol 63: 144–149

    Article  PubMed  Google Scholar 

  • Heilbronn E, Tolagen B (1965) Toxogonin in sarin, soman and tabun poisoning. Biochem Pharmacol 14: 73–77

    Article  PubMed  Google Scholar 

  • van Helden HPM, de Lange J, Busker RW, Melchers BPC (1991) Therapy of organophosphate poisoning in the rat by direct effects of oximes unrelated to ChE reactivation. Arch Toxicol 65: 586–593

    PubMed  Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacology 13: 222–257

    Article  Google Scholar 

  • de Jong LPA, Ceulen DI (1978) Anticholinesterase activity and rate of decomposition of some phosphylated oximes. Biochem Pharmacol 27: 857–863

    Article  PubMed  Google Scholar 

  • de Jong LPA, Wolring GZ (1980) Reactivation of acetylcholinesterase inhibited by 1,2,2′-trimethylpropyl methylphosphonofluoridate (soman) with HI 6 and related oximes. Biochem Pharmacol 29: 2379–2387

    Article  PubMed  Google Scholar 

  • de Jong LPA, Wolring GZ (1984) Stereospecific reactivation by some Hagedorn-oximes of acetylcholinesterases from various species including man, inhibited by soman. Biochem Pharmacol 33: 1119–1125

    Article  PubMed  Google Scholar 

  • de Jong LPA, Wolring GZ (1985) Aging and stereospecific reactivation of mouse erythrocyte and brain acetylcholinesterase inhibited by soman. Biochem Pharmacol 34: 142–145

    Article  PubMed  Google Scholar 

  • de Jong LPA, Verhagen MAA, Langenberg JP, Hagedorn I, Löffler M (1989) The bispyridinium-dioxime HLö 7. A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman. Biochem Pharmacol 38: 633–640

    Article  PubMed  Google Scholar 

  • Josselson J, Sidell FR (1978) Effects of intravenous thiamine on pralidoxime kinetics. Clin Pharmacol Ther 24: 95–100

    PubMed  Google Scholar 

  • Karger MH, Mazur Y (1971) Mixed sulfonic-carboxylic anhydrides. I. Synthesis and thermal stability. New syntheses of sulfonic anhydrides. J Org Chem 36: 528–531

    Article  Google Scholar 

  • Kirsch DM, Weger N (1981) Effects of the bispyridinium compounds HGG 12, HGG 42, and obidoxime on synaptic transmission and NAD(P)H-fluorescence in the superior cervical ganglion of the rat in vitro. Arch Toxicol 47: 217–232

    Article  PubMed  Google Scholar 

  • Klimmek R, Eyer P (1985) Pharmacokinetics and toxicity of the oxime HGG 12 in dogs. Arch Toxicol 57: 237–242

    Article  PubMed  Google Scholar 

  • Klimmek R, Eyer P (1986) Pharmacokinetics and pharmacodynamics of the oxime HI 6 in dogs. Arch Toxicol 59: 272–278

    Article  PubMed  Google Scholar 

  • Kusic R, Boskovic B, Vojvodic V, Jovanovic D (1985) HI 6 in man: blood levels, urinary excretion, and tolerance after intramuscular administration of the oxime to healthy volunteers. Fundam Appl Toxicol 5: S89-S97

    Article  PubMed  Google Scholar 

  • Kusic R, Jovanovic D, Randjelovic S, Joksovic D, Todorovic V, Boskovic B, Jokanovic M, Vojvodic V (1991) HI 6 in man: Efficacy of the oxime in poisoning by organophosphorus insecticides. Hum Exp Toxicol 10: 113–118

    PubMed  Google Scholar 

  • Ladstetter B (1990) Stabilität und metabolisches Schicksal neuer Antidote gegen Organophosphate. Thesis, Univ. München

  • Ligtenstein DA, Kossen SP (1983) Kinetic profile in blood and brain of the cholinesterase reactivating oxime HI 6 after intravenous administration to the rat. Toxicol Appl Pharmacol 71: 177–183

    Article  PubMed  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. Pharmacol Exp Ther 96: 99–113

    Google Scholar 

  • Löffler M (1986) Quartäre Salze von Pyridin-2,4-dialdoxim als Gegenmittel für Organophosphat-Vergiftungen. Thesis, Univ. Freiburg

  • Lorenz HP (1974) Syn- und anti-Aldoxime N-heteroaromatischer Aldoxime: Darstellung, Ermittlung ihrer Konfiguration und Stabilität sowie Studium der Isomerisierungsreaktion. Thesis, Univ. Freiburg

  • Lundy PM, Tremblay KP (1979) Ganglion blocking properties of some bispyridinium soman antagonists. Eur J Pharmacol 60: 47–53

    Article  PubMed  Google Scholar 

  • Lundy PM, Hansen AS, Hand BT, Boulet CA (1992) Comparison of several oximes against poisoning by soman, tabun and GF. Toxicology 72: 99–105

    Article  PubMed  Google Scholar 

  • Lüttringhaus A, Hagedorn I (1964) Quartäre Hydroxyiminomethyl-pyridinium-salze. Das Dichlorid des Bis-[4-hydroxyiminomethyl-pyridinium-(1)-methylläthers] (“LüH 6”), ein neuer Reaktivator der durch organische Phosphorsäureester gehemmten Acetylcholinesterase. Arzneimittelforschung 14: 1–5

    PubMed  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-square estimation on nonlinear parameters. J Soc Industr Appl Math 11: 431–441

    Article  Google Scholar 

  • Moncada S, Palmer MJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142

    PubMed  Google Scholar 

  • de la Motte S, Szinicz L (1991) Effects of pyridinium, 1-[[[4-(carbamoyl)-pyridinio]methoxy]methyl]-2-(hydroxyiminomethyl) dichloride monohydrate (HI 6) and atropine on the circulation and respiration of anaesthetized guinea-pigs. Arch Toxicol Suppl 14: 266–268

    PubMed  Google Scholar 

  • Nenner M (1970) Gleichzeitige Bestimmung der Aktivität von Acetylcholinesterase in Vollblut, Plasma und Erythrozyten mit dem automatischen Titrator. Z Klin Chem Klin Biochem 8: 537–540

    PubMed  Google Scholar 

  • Nenner M (1974) Phosphonylierte Aldoxime. Hemmwirkung auf Acetylcholinesterase und hydrolytischer Abbau. Biochem Pharmacol 23: 1255–1262

    Article  PubMed  Google Scholar 

  • Oldiges H, Schoene K (1970) Pyridinium- und Imidazoliniumsalze als Antidote gegenüber Soman- und Paraoxonvergiftungen bei Mäusen. Arch Toxicol 26: 293–305

    Article  Google Scholar 

  • Queguiner G, Pastour P (1964) Preparation of pyridinedicarboxaldehydes. Compt Rend 258: 5903–5906

    Google Scholar 

  • Queguiner G, Pastour P (1969) Synthesis in the pyridine series. V. Study of the reduction of ethyl pyridinedicarboxylates. Bull Soc Chim Fr 10: 3678–3683

    Google Scholar 

  • Rand MJ, McCulloch MW, Story DT (1980) Catecholamine receptors on nerve terminals. In: Szekeris L (ed) Adrenergic activators and inhibitors. Part I. Handbook of experimental pharmacology, vol 54/I. Springer Berlin Heidelberg New York, pp 223–266

    Google Scholar 

  • Reddy VK, Deshpande SS, Cintra WM, Scoble GT, Albuquerque EX (1991) Effectiveness of oximes 2-PAM and HI 6 in recovery of muscle function depressed by organophosphate agents in the rat hemidiaphragm: an in vitro study. Fundam Appl Toxicol 17: 746–760

    Article  PubMed  Google Scholar 

  • Reithmann C, Arbogast H, Hallek M, Auburger G, Szinicz L (1988) Studies on the role of central catecholaminergic mechanisms in the antidotal effect of the oxime HI 6 in soman poisoned mice. Arch Toxicol 62: 41–44

    Article  PubMed  Google Scholar 

  • Remien J, Mellinghoff A, Reithmeier I (1991) Muscarinic and nicotinic actions of oximes. Akademie Symposium: Role of oximes in the treatment of anticholinesterase agent poisoning, Munich, Oct 7

  • Rowland M, Tozer TN (1989) Clinical pharmacokinetics 2nd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Sachs L (1978) Angewandte Statistik 5. Aufl. Springer-Verlag Berlin Heidelberg New York

    Google Scholar 

  • Schlagmann C, Ulbrich H, Remien J (1990) Bispyridinium (oxime) compounds antagonize the “ganglion blocking” effect of pyridostigmine in isolated superior cervical ganglia of the rat. Arch Toxicol 64: 482–489

    Article  PubMed  Google Scholar 

  • Schoene K (1973) Phosphonyloxime aus Soman; Bildung und Reaktion mit Acetylcholinesterase in vitro. Biochem Pharmacol 22: 2997–3003

    Article  PubMed  Google Scholar 

  • Schoene K, Oldiges H (1973) Die Wirkungen von Pyridiniumsalzen gegenüber Tabun- und Somanvergiftungen in vivo und in vitro. Arch Int Pharmacodyn 204: 110–123

    PubMed  Google Scholar 

  • Schoene K, Strake EM (1971) Reaktivierung von Diäthylphosphoryl-Acetylcholinesterase. Affinität und Reaktivität einiger Pyridiniumoxime. Biochem Pharmacol 20: 1041–1051

    Article  PubMed  Google Scholar 

  • Sidell FR, Groff WA, Kaminskis A (1972) Toxogonin and pralidoxime: kinetic comparison after intravenous administration to man. J Pharm Sci 60: 860–863

    Google Scholar 

  • Simons KJ, Briggs CJ (1983) The pharmacokinetics of HI 6 in beagle dogs. Biopharm Drug Dispos 4: 375–388

    PubMed  Google Scholar 

  • Stark I (1968) Versuche zur Darstellung eines LüH6 (Toxogonin) überlegenen Acetylcholinesterase-Reaktivators. Dipl. Arbeit, Univ. Freiburg

  • Stark I (1971) Reaktivierung phosphorylierter Acetylcholinesterase mit quaternierten Pyridinaldoximen. Ermittlung des Zusammenhangs zwischen Oximacidität und Reaktivierungsvermögen. Thesis, Univ. Freiburg

  • Steinberg GM, Solomon S (1966) Decomposition of a phosphonylated pyridinium aldoxime in aqueous solution. Biochemistry 5: 3142–3150

    Article  PubMed  Google Scholar 

  • Weger N, Szinicz L (1981) Therapeutic effects of new oximes, benactyzine and atropin in soman poisoning: Part I. Effects of various oximes in soman, sarin, and Vx poisoning in dogs. Fundam AppI Toxicol 1: 161–163

    Google Scholar 

  • Wolthuis OL, Cohen EM (1967) The effects of P2S, TMB-4, and LüH 6 on the rat phrenic nerve diaphragm preparation treated with soman or tabun. Biochem Pharmacol 16: 361–367

    Article  PubMed  Google Scholar 

  • Wolthuis OL, Vanwersch RAP, van der Wiel HJ (1981) The efficacy of somebis-pyridinium oximes as antidotes to soman in isolated muscles of several species including man. Eur J Pharmacol 70: 355–369

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of thesis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyer, P., Hagedorn, I., Klimmek, R. et al. HLö 7 dimethanesulfonate, a potent bispyridinium-dioxime against anticholinesterases. Arch Toxicol 66, 603–621 (1992). https://doi.org/10.1007/BF01981499

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01981499

Key words

Navigation